
Dependency Parsing for Telugu Using Data-driven Parsers

Praveen Gatla

Assistant Professor

Department of Linguistics

Faculty of Arts

Banaras Hindu University

praveengatla@gmail.com

Abstract

In this paper, we have developed manually annotated Telugu corpora by following DS guidelines

(2009) and experimented our Telugu dependency treebank data on the data-driven parsers like

Malt (Nivre et al., 2007a) and MST (McDonald et al. 2006) for parsing Telugu sentences. In the

dependency, we link the head and dependents with their dependency relations (drels) by giving

kāraka and non-kāraka relations to them. Telugu annotated data contains token with their morph

information, pos, chunk and the drels. We have used our final Telugu treebank data in CONLL

format for parsing in malt and MST parsers. We evaluated the labeled attachment score (LAS),

unlabeled attachment score (UAS) and labeled accuracy (LA) for both the parsers and also

compared their score in case of dependency relation too. Finally, we evaluated the most frequent

errors which occurred after parsing the sentences and explained them with relevant examples

with appropriate linguistic analysis, so that we can improve the accuracy of parsers in our future

research.

Keywords: Dependency Parsing, Parser, Data-driven parser, Telugu Dependency Treebank,

Malt, MST, kāraka, non-kāraka.

1 Introduction

Parsing is the analysis of the grammatical structure of a sentence. Dependency Parsing or

Syntactic Parsing is the task of recognizing a sentence by assigning a syntactic structure to it.

There are different types of approaches to develop a parser. They are grammar-driven, data-

driven and hybrid parsers. In the recent years, data-driven parsing is able to achieve a greater

Language in India www.languageinindia .com UGC Approved Journal No. 49042

Vol. 19:1 January 2019 <185-197>

amount of success because of the availability of annotated corpora. Data-driven parser needs

huge amount of manually annotated data or dependency trees which is called as treebank. It

consists of the representation of the dependency relations between words in a given sentence.

Dependency trees are useful to develop parsers. Unlike English and other foreign languages,

Telugu is a free-word-order language. The free-word-order languages can be handled better by

using the dependency based framework other than the constituency based one (cf. Bharati et al.,

1995). Many data-driven parsers have been developed recently because of the availability of

dependency treebanks in Indian languages (Hindi, Telugu, Bangla). There are efforts to develop

parsers for Indian languages. In order to develop the parsers, huge amount of annotated data is

developed for Indian languages like Hindi, Telugu, Bangle etc. The relevant works are Caroll

(2000), Bharati, A. (2008, 2009, 2010, 2011) Joakam Nivre (2009), Prashanth Mannem (2009),

Bharat Ram Ambati (2009), Meher Vijay and Y. Kalyan D. (2009), Sankar D. (2009), Aniruddha

G. (2009), Sanjay Chatterji et al. (2009), Bharati,A. and Rajeev, S. (2009), Phani, G. (2010),

Samar, H. (2011), Venkat, B. & Kumari, S. (2012), Karan, S. (2012), Raghu Pujitha, G. (2014)

etc.

Similarly, we also made an effort to develop the lexical resources for Telugu i.e. treebank data.

We have used two most popular data-driven parsers, namely, Malt (Nivre et al., 2007a) and MST

(McDonald et al., 2006) to implement developed Telugu dependency treebank. We discuss about

data collection in Section 2 and details of Telugu treebank in Section 3, briefly explained about

Malt and MST parser experiment and result in Section 4. In Section 5, we discussed about the

error analysis of Telugu parsed sentences and we conclude the paper with labeled, unlabeled

attachment score and labeled accuracies with future work.

2 Data Collection

Here, we have used 2424 Telugu treebank data in which the source has been collected from

different Telugu grammar books of Ramarao, C. (1975, 1990, 2002), Subrahmanyam, P.S. (1984,

2013), Krishnamurti, Bh. (1985, 1991, 2003, 2009), Ramakrishna Reddy, B. (1986), Subbarao,

K.V. (2012), Arora, H (1990), Lakshmi Bai, B. (1990), Rani, Usha (1990), Vijayanarayana, B.

(1990), Krishnamurti, Bh. and Sivananda Sarma, P. (2005), Ramanarsimham, P. (2006),

Language in India www.languageinindia .com UGC Approved Journal No. 49042

Vol. 19:1 January 2019 <185-197>

Umamaheshwara Rao, G. (2012), Rajeshwari, Sivuni (2012), Vishwanatham, K. (2007),

Srinivas, Addanki (2012) and from Telugu corpus.

3 Telugu Trebank

Treebanking is the process of marking the syntactic or semantic relations between the two words

or constituents in a sentence. Once, a text or corpus is annotated with the linguistic information

then it is called as a parsed text. In order to build Telugu treebank, we extracted the sentences

from various Telugu grammars. We followed DS guidelines (2009d) which are developed by

Akshara Bharati. These guidelines are followed based on the pān ṇinian grammar formalism.

There are two types of relations. They are kāraka relations and non-kāraka relations. Firstly,

kāraka relations are like kartā (k1), kartā samānādhikaran ṇa (k1s), karma (k2), karma

samānādhikaran ṇa (k2s), goal or destination (k2p), karan ṇa (k3), sampradāna (k4), anubhava

kartā(k4a), apādāna (k5), vis ṇayādhikaran ṇa (k7), dēśādhikaran ṇa (k7p), kālādhikaran ṇa (k7t) etc

and non-kā:raka relations are like s ṇas ṇt ṇhī (r6), hētu 'cause-effect' (rh), prati 'direction' (rd), noun

modifier (nmod), verb modifier (vmod), adverbs (adv), conjunct (ccof) etc. By following the

above guidelines, we developed the 2424 Telugu treebank data (sentences). In this Telugu

treebank data, we have incorporated linguistic knowledge in the form of morphological features

which might improve the accuracy for parsing Telugu treebank. The main goal of the corpus

based approach is to encode linguistic knowledge like morphologically rich features of Telugu

language, it serves as a strong cue for a sentence to identify the syntactic relations between the

words in a sentence.

4 Experiment and Results

4.1 Malt Parser

Nivre et al., (2007a) says that “Malt parser is a freely available implementation of the parsing

models described in Malt parser. It implements the transition-based approach to dependency

parsing. It has a transition system for mapping sentences to dependency trees and a classifier for

predicting the next transition for every possible system configuration”. Malt parser uses three

families of parsing algorithms. They are Nivre, Covington and Stack. So the various parsing

algorithms which are provided by Malt are nivre/arc-eager, nivre/arc-standard, stackproj,

Language in India www.languageinindia .com UGC Approved Journal No. 49042

Vol. 19:1 January 2019 <185-197>

stackeager, covington projective, covington non-projective. We tested Telugu treebank with all

the algorithms and found stackproj gave a better performance for parsing while liblinear works

better than libsvm for learning. Niver et al. (2007a) “Malt parser uses features of the partially

built dependency structure together with features of the (tagged) input string”. It uses history-

based feature models in predicting the next action in the dependency structure.

4.2 MST Parser

MST parser is a freely available implementation of the parsing models. McDonald et al. (2005)

says that “graph-based parsing system in that core parsing algorithms can be equated to finding

directed maximum spanning trees (either projective or non-projective) from a dense graph

representation of the sentence”. The basic idea of graph based parsing is to draw dependency

graphs for a sentence. For non-projective parsing, MST uses Chu-Liu-Edmonds Maximum

Spanning Tree algorithm and Eisner's algorithm for projective parsing. There are three different

types of features used by MST parser. They are basic, extended, and second-order features.

McDonald et al., (2005a) used online large margin learning as the learning algorithm for MST

parser.

4.3 Data Setting

Here, In this phase, we divided the Telugu treebank into training and testing dataset by applying

5-fold cross validation. It has generated training dataset (9610 tokens) and testing dataset (2364

tokens). The training and testing datasets are having a unique DEPREL (Dependency Relations)

label 'root' for tokens where HEAD=0.

4.4 Evaluation and Result

We evaluated the performance of our model via the standard Labeled Attachment Score (LAS),

Unlabeled Attachment Score (UAS), Labeled Accuracy (LA) metrices and via precision, recall

and fscore metrices.

We compared the accuracies of both Malt and MST parser and mentioned in Table 1. Malt and

MST has scored LAS of 79.67% and 73.62% respectively. Malt also scored more score in case of

LA. If we see the Unlabeled Attachment Score (UAS), though MALT has scored more but MST

Language in India www.languageinindia .com UGC Approved Journal No. 49042

Vol. 19:1 January 2019 <185-197>

also has given a better performance by scoring 91.44%. Both the parsers has scored more

accuracy on the test data for UAS. By looking at the Table 1, it is clear that out of both the

parsers, Malt has given better performance than MST.

Parsers LAS UAS LA

MALT 79.67 92.35 82.45

MST 73.62 91.44 76.30

Table 1 Result of both Malt and MST on testing dataset

In the below given Table 2 and 3 represents the performance of the kāraka and non-kāraka

dependency relations on testing and parsed datasets of Malt and MST parsers respectively.

deprel treebankcount correctcounter parsercount recall precision fscore

k1 417 369 457 88.49 80.74 84.44

k1s 43 32 49 74.42 65.31 69.54

k2 241 203 269 84.23 75.46 79.60

k2p 42 35 40 83.33 87.5 85.36

k2s 19 7 17 36.84 41.18 38.88

k4 55 42 68 76.36 61.76 68.28

k4a 27 6 9 22.22 66.67 33.33

k7 21 9 18 42.86 50 32.26

k7p 42 31 43 73.81 72.09 72.93

k7t 78 57 65 73.08 87.69 79.72

nmod 40 10 14 25 71.43 37.03

vmod 175 161 194 92 82.99 97.55

adv 417 369 457 88.49 80.74 84.44

ccof 43 32 49 74.42 65.31 69.54

r6 241 203 269 84.23 75.46 79.60

rh 42 35 40 83.33 87.5 85.36

Table 2 Precision and recall DEPREL of 'kāraka and non-kāraka relation' on Malt Parser

Language in India www.languageinindia .com UGC Approved Journal No. 49042

Vol. 19:1 January 2019 <185-197>

deprel treebankcount correctcounter parsercount recall precision fscore

k1 417 359 513 86.09 69.98 77.20

k1s 43 23 38 53.49 60.53 56.79

k2 241 182 278 75.52 65.47 70.13

k2p 42 28 35 66.67 80 54.54

k2s 19 6 14 31.58 42.86 36.36

k4 55 30 46 54.55 65.22 59.40

k4a 27 6 11 22.22 54.55 31.57

k7 21 4 8 19.05 50 27.58

k7p 42 15 21 35.71 71.43 47.61

k7t 78 53 71 67.95 74.65 71.14

nmod 40 6 17 15 35.29 21. 05

vmod 175 165 209 94.29 78.95 85.94

adv 33 21 34 63.64 61.76 62.68

ccof 36 28 33 77.78 84.85 81.16

r6 12 2 7 16.67 28.57 21.05

rh 27 6 11 22.22 54.55 31.57

Table 3 Precision and recall DEPREL of 'kāraka and non-kāraka relation' on MST Parser

In the above mentioned Table 2 and 3, consists of seven columns, among them the first column

denotes dependency relation (deprel), second to seventh columns explains about the deprel

occurrences and accuracies of both the parsers. The keywords in the first row of table 2 and 3 are

mentioned below.

a) deprel- dependency relations

b) treebankcount - Total number of tokens in the test data.

c) correctcounter - The number of tokens were correctly identified in the parsed data

d) parsercount – Total number of tokens in the parsed data.

e) precision: correctcounter / parsercount.

f) recall: correctcounter / treebankcount.

Language in India www.languageinindia .com UGC Approved Journal No. 49042

Vol. 19:1 January 2019 <185-197>

g) fscore: It is the harmonic mean of precision and recall.

fscore = (2 × precision × recall) / (precision + recall).

In both the parsers, the parser count has increased and decreased than treebank count. For

example, treebank count of k1 is 417 where as parser count has increased to 457 and 369 are

parsed correctly in Malt similarly parser count is increased to 513 and 359 are parsed correctly

in MST. In the same way, treebank count of k4a is 27 where as parser count has decreased to 9

and 6 are parsed correctly in Malt similarly parser count is decreased to 11 and 6 are parsed

correctly in MST.

McDonald and Nivre, (2007) says that “Malt is good at short distance labeling and MST is good

at long distance labeling”. Telugu treebank has very less non-projective data. Telugu sentences

which are having more than 10 words are less in our dataset because we have taken the sentences

from different grammar books of Telugu. Because Malt performs better in short distance label, it

has secured good score in ‘k1’ and ‘k2’ dependency label. In other short distance label cases also

Malt parser performed better than MST parser. The next section discusses about the error

analysis of Telugu Parsed sentences.

5. Error Analysis of Telugu Parsed Sentences

This section deals with the error analysis of Telugu parsed sentences. We have developed the

Telugu treebank data (2424 sentences) and implemented by using the two data-driven parsers

(Malt and MST)(Discussed in Section 4). The Telugu test data is categorized according to the

output given by the parsers. The test was done by using the Malt evaluation tool which has an

underlying automatic mechanism to extract the most frequent incorrect parsed output which are

occurred in the Telugu parsed test dataset. These sentences are divided into two parts viz. correct

parsed output and incorrect parsed output. The incorrect parsed output is taken into consideration

for the error analysis of the incorrect parsed output. Parsers extracted the most seven frequent

errors from the test data (output). They are ‘k2’ (karma) instead of ‘k1’ (kartā) 31 times, ‘k1’

(kartā) instead of ‘k2’ (karma) for 27 times, ‘k4’ (sampradāna) instead of ‘k4a’ (anubhava kartā)

for 14 times, ‘k1’ (kartā) instead of ‘nmod’ (noun modifier) for 7 times, ‘k1’ (kartā) instead of

‘k7t’ (kālādhikaran ṇa) for 7 times, ‘k7p’ (dēśādhikaran ṇa) instead of ‘k7’ (adhikaran ṇa) for 6 times,

Language in India www.languageinindia .com UGC Approved Journal No. 49042

Vol. 19:1 January 2019 <185-197>

‘vmod’ (verb modifier) instead of ‘rh’ (hētu) for 11 times etc . Among these seven frequent

errors, here we discuss the first frequent error and explained with appropriate linguistic

explanation. The analysis of the first frequent incorrect parsed outputs is given below.

5.1 “k1” instead of “k2”: 27 times (Passive constructions)

The example which is illustrated in this section is a passive construction in Telugu. Most of the

time, we come across with passive constructions only in written Telugu, where as the same does

not occur in spoken Telugu. To make passive constructions in Telugu, one has to use '-bad ḍu' with

the verbal root and the postpositions '-cēta' for nouns in passive constructions. The examples are

discussed below.

1. bhāratamḍ/NNP vyāsud ṇi/NNP racimḍpabad ḍimḍdi/VM. ‘vyāsud ḍi was written by Vyasa’

The POS tag of the each word is separated by a slash(/). Here NNP- Proper Noun, VM- Finite

Verb. The following dependency relations of the example1. Here, we marked the dependency

relations between two inter chunks in a given sentence. Dependency relations of the example1

are as follows.

k2(bhāratamḍ, racimḍpabad ḍimḍdi)

k1(vyāsud ḍi, racimḍpabad ḍimḍdi)

finite verb(racimḍpabad ḍimḍdi). Here we renamed root as finite verb for our convenient.

The parsed output of the above example1 is given by the Malt parser. Here, we highlighted the

incorrect Telugu parsed output which is generated by malt evaluation tool.

k1(bhārataṃṃ, raciṃṃpabad ṃiṃṃdi)

k2(vyāsud ṃi, raciṃṃpabad ṃiṃṃdi)

finite verb(raciṃṃpabad ṃiṃṃdi).

In the above illustrated example bhāratamḍ vyāsud ḍi cēta racimḍpabad ḍimḍdi. ‘Bharatam was

written by Vyasa’. Whenever the pattern, simple verb + -bad ḍu suffix with cēta a postposition

occurs the parsed output is marked vyāsud ḍi cēta as k2(karma) where actually should mark as

Language in India www.languageinindia .com UGC Approved Journal No. 49042

Vol. 19:1 January 2019 <185-197>

k1(kartā). This kind of patterns were not trained by the parsers properly. The reasons may be the

input data (trained data) might be having few number of such sentences with ‘-bad ṃu’ and ‘-cēta’

constructions or the parser could not learn this pattern properly. Hence the parser failed to learn

this linguistic rule which is why k1(kartā) is marked as k2(karma). If the above mentioned

linguistic cue is given as training to the parsers, it may mark such kind of examples as k1

accurately.

2. amḍduvalla/RP nityamḍ/NN gāyatri/NNP japimḍcu/VM. ‘Because of, always chant Gayatri’

Here RP- Particle, NNP-Proper Noun, VM- Finite Verb. Here we marked the dependency

relations between two inter chunks in a given sentence. Dependency relations of the above

mentioned example is as follows.

rh(amḍduvalla, japimḍcu)

k7t(nityaM, japimḍcu)

k2(gāyatri, japimḍcu)

finite verb(japimḍcu)

The parsed output of the above example 2 is given by the Malt parser. Here, we highlighted the

incorrect Telugu parsed output which is generated by malt evaluation tool.

k1(aṃṃduvalla, japiṃṃcu)

k7t(nityaM, japimḍcu)

k1(gāyatri, japiṃṃcu)

finite verb(japimḍcu)

The example 2 given above is classical Telugu sentence. Usually, an animate object always

prefers the accusative case marker ‘-ni’. In the present example amḍduvalla nityamḍ gāyatri

japimḍcu, gāyatri doesn't contain the accusative case marker which always comes for the animate

object. When we come across such kind of sentences, we mark k-relations by using the

syntactico-semantico relations accurately. However, the absence of a case marker (accusative

Language in India www.languageinindia .com UGC Approved Journal No. 49042

Vol. 19:1 January 2019 <185-197>

case marker/vibhakti) has become an issue to the parser to mark k-relations that is why k2 is

marked as k1.

6. Conclusion

In this paper, we first explored the two data-driven parsers Malt and MST. We have used the

same Telugu treebank for both the parsers. The treebank has very less non-projective sentences

nearly 1.56%. We developed the best model for Malt as well as for MST. We found overall Malt

gives better performance than MST. Malt system secured labeled attachment score (LAS) of

79.67% where MST secured 73.62%. It has proved that Malt Parser performed better than MST

in case of short distance label (Cf. McDonald and Nivre, 2007). Our future research will be

proceeded to develop a hybrid system by combining both Malt and MST parsed output. We

extracted the most 7 frequent incorrect parsed outputs and explained the frequently incorrect

tested output (i.e. k2 <k1) with proper linguistic input. Apart from this, we also proved that

linguistic knowledge will improve the performance of the data-driven parsers.

Acknowledgements

I thank Prof. G. Umamaheshwara Rao who encouraged me to build the Telugu parser. I thank

Joakam Nivre and McDonald for developing parsers like Malt and MST respectively. Because of

this kind of open resources, we could implement our Telugu treebank data to develop a Telugu

parser. I convey my sincere thanks to Y. Vishwanath Naidu and Gouri Sahoo for their technical

support.

Language in India www.languageinindia .com UGC Approved Journal No. 49042

Vol. 19:1 January 2019 <185-197>

References

Ambati, B.R., Gadde, P., Jindal, K., 2009. Experiments in Indian language dependency parsing.

In: Proceedings of the ICON09 NLP Tools Contest: Indian Language Dependency Parsing. pp.

32–37.

Bharati, A., Chaitanya, V., Sangal, R., 1995. Natural Language Processing: A Paninian

Perspective. Prentice-Hall of India, 65–106.

Bharati, A., Sangal, R., Sharma, D.M., Bai, L., 2006. AnnCorra: annotating corpora guidelines

for POS and Chunk Annotation for Indian languages. In: Technical Report (TR-LTRC-31),

LTRC, IIIT-Hyderabad.

Bharati, A., Sharma, D.M., Husain, S., Bai, L., Begum, R., Sangal, R., 2009. AnnCorra:

TreeBanks for Indian Languages, Guidelines for Annotating Hindi TreeBank (version 2.0).

<http://ltrc.iiit.ac.in/MachineTrans/research/tb/DS-guidelines/DS-guidelines-ver2-28-05-09.pdf>

Garapati, U.R., Koppaka, R. and Addanki, S., 2012. Dative case in Telugu: a parsing perspective.

In Proceedings of the Workshop on Machine Translation and Parsing in Indian Languages (pp.

123-132).

G, U.Rao. 2012. Telugu Bhasha-Sanganam. Hyderabad: Potti Sriramulu Telugu University.

Husain, S., 2009. Dependency Parsers for Indian Languages. In: Proceedings of the ICON09

NLP Tools Contest: Indian Language Dependency Parsing. India.

Kumari, B.V.S. and Rao, R.R., 2017. Telugu dependency parsing using different statistical

parsers. Journal of King Saud University-Computer and Information Sciences, 29(1), pp.134-

140.

Kesidi, S.R., Kosaraju, P., Vijay, M., Husain, S., 2010. A two stage constraint based hybrid

dependency parser for Telugu. In: Proceedings of the ICON-2010 Tools Contest on Indian

Language Dependency Parsing.

Krishnamurti, Bh. 2009. Studies in Telugu Linguistics. Hyderabad: C.P. Brown Academy.

Language in India www.languageinindia .com UGC Approved Journal No. 49042

Vol. 19:1 January 2019 <185-197>

Krishnamurti, Bh. and Gwyn, J.P.L. 1985. A Grammar of Modern Telugu. Delhi: Oxford

University Press.

Krishnamurti, Bh. and Sarma, Sivananda. 2005 . A Basic Course in Modern Telugu. Hyderabad:

Telugu Akademi.

McDonald, R., Pereira, F., Ribarov, K. and Hajič, J., 2005. Non-projective dependency parsing

using spanning tree algorithms. In Proceedings of the conference on Human Language

Technology and Empirical Methods in Natural Language Processing (pp. 523-530). Association

for Computational Linguistics.

McDonald, R. and Pereira, F., 2006. Online learning of approximate dependency parsing

algorithms. In 11th Conference of the European Chapter of the Association for Computational

Linguistics.

Nivre, J., et al. 2007b. Maltparser: a language-independent system for data-driven dependency

parsing. Nat. Lang. Eng. 13 (2), 95–135.

Nivre, J., 2009. Parsing Indian Languages with MaltParser. In: Proceedings of the ICON09 NLP

Tools Contest: Indian Language Dependency Parsing.

Ramakrishna Reddy, B. 1986. Localist Studies in Telugu Syntax. Hyderabad: Osmania Campus.

Ramanarsimham, P. 2006. Adhunika Bhasalo 'ku', Bhasha. Pg 42-56. Hyderabad: Telugu

Linguists' Forum.

Ramarao, C. 2011. Telugu Vakyam. Secunderabad: Kavya Publishing House.

Ramarao, C. 2002. Quest of Subject in Telugu Case for Language Studies edited by Swarya

Lakshmi. pg-153-156. Hyderabad: Booklinks Corporation.

Srinivas, A. 2012. Telugu Bhasha-Vyakaranam. Hyderabad: Akruthi Offset Printers.

Subramanyam, P.S. 2002. Ba:lavya:karnamu of Paravastu Cinnaya Suri. Thiruvananthapuram :

Dravidian Linguistics Association.

Language in India www.languageinindia .com UGC Approved Journal No. 49042

Vol. 19:1 January 2019 <185-197>

Subbarao, K.V. 2012. Lexical Anaphors in South Asian Languages, Coalescence. Bangalore:

Mudranik Technologies Pvt. Ltd.

Language in India www.languageinindia .com UGC Approved Journal No. 49042

Vol. 19:1 January 2019 <185-197>

