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Abstract

In this paper, we have developed manually annotated Telugu corpora by following DS guidelines

(2009) and experimented our Telugu dependency treebank data on the data-driven parsers like

Malt (Nivre et al., 2007a) and MST (McDonald et al. 2006) for parsing Telugu sentences. In the

dependency, we link the head and dependents with their dependency relations (drels) by giving

kāraka and non-kāraka relations to them. Telugu annotated data contains token with their morph

information, pos, chunk and the drels. We have used our final Telugu treebank data in CONLL

format for parsing in malt and MST parsers. We evaluated the labeled attachment score (LAS),

unlabeled  attachment  score  (UAS) and labeled  accuracy (LA) for  both  the  parsers  and also

compared their score in case of dependency relation too. Finally, we evaluated the most frequent

errors which occurred after parsing the sentences and explained them with relevant examples

with appropriate linguistic analysis, so that we can improve the accuracy of parsers in our future

research. 

Keywords:  Dependency  Parsing,  Parser,  Data-driven  parser,  Telugu  Dependency  Treebank,

Malt, MST, kāraka, non-kāraka.

1 Introduction

Parsing  is  the  analysis  of  the  grammatical  structure  of  a  sentence.  Dependency Parsing or

Syntactic Parsing is the task of recognizing a sentence by assigning a syntactic structure to it.

There are different types of approaches to develop a parser. They are grammar-driven, data-

driven and hybrid parsers. In the recent years, data-driven parsing is able to achieve a greater
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amount of success because of the availability of annotated corpora. Data-driven parser needs

huge amount of manually annotated data or dependency trees which is called as treebank. It

consists of the representation of the dependency relations between words in a given sentence.

Dependency trees are useful to develop parsers. Unlike English and other foreign languages,

Telugu is a free-word-order language. The free-word-order languages can be handled better by

using the dependency based framework other than the constituency based one (cf.  Bharati et al.,

1995). Many data-driven parsers have been developed recently because of the availability of

dependency treebanks in Indian languages (Hindi, Telugu, Bangla). There are efforts to develop

parsers for Indian languages. In order to develop the parsers, huge amount of annotated data is

developed for Indian languages like Hindi, Telugu, Bangle etc. The relevant works are Caroll

(2000), Bharati, A. (2008, 2009, 2010, 2011) Joakam Nivre (2009), Prashanth Mannem (2009),

Bharat Ram Ambati (2009), Meher Vijay and Y. Kalyan D. (2009), Sankar D. (2009), Aniruddha

G. (2009), Sanjay Chatterji et al. (2009), Bharati,A. and Rajeev, S. (2009), Phani, G. (2010),

Samar, H. (2011), Venkat, B. & Kumari, S. (2012), Karan, S. (2012), Raghu Pujitha, G. (2014)

etc. 

Similarly, we also made an effort to develop the lexical resources for Telugu i.e. treebank data.

We have used two most popular data-driven parsers, namely, Malt (Nivre et al., 2007a) and MST

(McDonald et al., 2006) to implement developed Telugu dependency treebank. We discuss about

data collection in Section 2 and details of Telugu treebank in Section 3, briefly explained about

Malt and MST parser experiment and result in Section 4. In Section 5, we discussed about the

error analysis of Telugu parsed sentences and we conclude the paper with labeled, unlabeled

attachment score and labeled accuracies with future work.

2 Data Collection

Here, we have used 2424 Telugu treebank data in which the source has been collected from

different Telugu grammar books of Ramarao, C. (1975, 1990, 2002), Subrahmanyam, P.S. (1984,

2013),  Krishnamurti, Bh. (1985, 1991, 2003, 2009), Ramakrishna Reddy, B. (1986), Subbarao,

K.V. (2012), Arora, H (1990), Lakshmi Bai, B.  (1990), Rani, Usha (1990), Vijayanarayana, B.

(1990),   Krishnamurti,  Bh.  and  Sivananda  Sarma,  P.  (2005),  Ramanarsimham,  P.  (2006),
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Umamaheshwara  Rao,  G.  (2012),  Rajeshwari,  Sivuni   (2012),  Vishwanatham,  K.  (2007),

Srinivas, Addanki (2012) and from Telugu corpus. 

3 Telugu Trebank

Treebanking is the process of marking the syntactic or semantic relations between the two words

or constituents in a sentence. Once, a text or corpus is annotated with the linguistic information

then it is called as a parsed text. In order to build Telugu treebank, we extracted the sentences

from various Telugu grammars. We followed DS guidelines (2009d) which are developed by

Akshara  Bharati.  These  guidelines  are  followed  based  on the  pān ṇinian  grammar  formalism.

There are two types of relations.  They are kāraka relations and non-kāraka relations. Firstly,

kāraka  relations  are  like  kartā  (k1),  kartā  samānādhikaran ṇa  (k1s),  karma  (k2),  karma

samānādhikaran ṇa  (k2s),  goal  or  destination  (k2p),  karan ṇa  (k3),  sampradāna  (k4),  anubhava

kartā(k4a),  apādāna (k5),  vis ṇayādhikaran ṇa  (k7),  dēśādhikaran ṇa  (k7p),  kālādhikaran ṇa  (k7t)  etc

and non-kā:raka relations are like s ṇas ṇt ṇhī (r6), hētu 'cause-effect' (rh), prati 'direction' (rd), noun

modifier (nmod), verb modifier (vmod), adverbs (adv), conjunct (ccof) etc. By following the

above  guidelines,  we  developed  the  2424  Telugu  treebank  data  (sentences).  In  this  Telugu

treebank data, we have incorporated linguistic knowledge in the form of morphological features

which might improve the accuracy for parsing Telugu treebank. The main goal of the corpus

based approach is to encode linguistic knowledge like  morphologically rich features of Telugu

language, it serves as a strong cue for a sentence to identify the syntactic relations between the

words in a sentence. 

4 Experiment and Results

4.1 Malt Parser 

Nivre et al., (2007a) says that “Malt parser is a freely available implementation of the parsing

models described in  Malt parser. It implements the transition-based approach to dependency

parsing. It has a transition system for mapping sentences to dependency trees and a classifier for

predicting the next transition for every possible system configuration”.  Malt parser uses three

families of parsing algorithms. They are Nivre, Covington and Stack. So the various parsing

algorithms  which  are  provided  by  Malt  are  nivre/arc-eager,  nivre/arc-standard,  stackproj,
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stackeager, covington projective, covington non-projective.  We tested Telugu treebank with all

the algorithms and found stackproj gave a better performance for parsing while liblinear works

better than libsvm for learning.  Niver et al. (2007a) “Malt parser uses features of the partially

built dependency structure together with features of the (tagged) input string”. It uses history-

based feature models in predicting the next action in the dependency structure. 

4.2 MST Parser

MST parser is a freely available implementation of the parsing models. McDonald et al. (2005)

says that “graph-based parsing system in that core parsing algorithms can be equated to finding

directed  maximum  spanning  trees  (either  projective  or  non-projective)  from  a  dense  graph

representation of the sentence”.  The basic idea of graph based parsing is to draw dependency

graphs  for  a  sentence.  For  non-projective  parsing,  MST uses  Chu-Liu-Edmonds  Maximum

Spanning Tree algorithm and Eisner's algorithm for projective parsing. There are three different

types  of  features  used by MST parser. They are basic,  extended,  and second-order  features.

McDonald et al., (2005a) used online large margin learning as the learning algorithm for MST

parser.

4.3 Data Setting

Here, In this phase, we divided the Telugu treebank into training and testing dataset by applying

5-fold cross validation. It has generated training dataset (9610 tokens) and testing dataset (2364

tokens). The training and testing datasets are having a unique DEPREL (Dependency Relations)

label 'root' for tokens where HEAD=0. 

4.4 Evaluation and Result

We  evaluated the performance of our model via the standard Labeled Attachment Score (LAS),

Unlabeled Attachment Score (UAS), Labeled Accuracy (LA)  metrices and via precision, recall

and fscore metrices. 

We compared the accuracies of both Malt and MST parser and mentioned in Table 1. Malt and

MST has scored LAS of 79.67% and 73.62% respectively. Malt also scored more score in case of

LA. If we see the Unlabeled Attachment Score (UAS), though MALT has scored more but MST
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also  has  given  a  better  performance  by  scoring  91.44%.  Both  the  parsers  has  scored  more

accuracy  on the test data for UAS. By looking at the  Table 1, it is clear that out of both the

parsers, Malt has given better performance than MST.

Parsers LAS UAS LA

MALT 79.67 92.35 82.45

MST 73.62 91.44 76.30

Table 1 Result of both Malt and MST on testing dataset

In the below given Table 2 and 3 represents the performance of the kāraka and non-kāraka

dependency relations on testing and parsed datasets  of Malt and MST parsers respectively.

deprel treebankcount correctcounter parsercount recall precision fscore

k1 417 369 457 88.49 80.74 84.44

k1s 43 32 49 74.42 65.31 69.54

k2 241 203 269 84.23 75.46 79.60

k2p 42 35 40 83.33 87.5 85.36

k2s 19 7 17 36.84 41.18 38.88

k4 55 42 68 76.36 61.76 68.28

k4a 27 6 9 22.22 66.67 33.33

k7 21 9 18 42.86 50 32.26

k7p 42 31 43 73.81 72.09 72.93

k7t 78 57 65 73.08 87.69 79.72

nmod 40 10 14 25 71.43 37.03

vmod 175 161 194 92 82.99 97.55

adv 417 369 457 88.49 80.74 84.44

ccof 43 32 49 74.42 65.31 69.54

r6 241 203 269 84.23 75.46 79.60

rh 42 35 40 83.33 87.5 85.36

Table 2 Precision and recall DEPREL of 'kāraka and non-kāraka relation' on Malt Parser
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deprel treebankcount correctcounter parsercount recall precision fscore

k1 417 359 513 86.09 69.98 77.20

k1s 43 23 38 53.49 60.53 56.79

k2 241 182 278 75.52 65.47 70.13

k2p 42 28 35 66.67 80 54.54

k2s 19 6 14 31.58 42.86 36.36

k4 55 30 46 54.55 65.22 59.40

k4a 27 6 11 22.22 54.55 31.57

k7 21 4 8 19.05 50 27.58

k7p 42 15 21 35.71 71.43 47.61

k7t 78 53 71 67.95 74.65 71.14

nmod 40 6 17 15 35.29 21. 05

vmod 175 165 209 94.29 78.95 85.94

adv 33 21 34 63.64 61.76 62.68

ccof 36 28 33 77.78 84.85 81.16

r6 12 2 7 16.67 28.57 21.05

rh 27 6 11 22.22 54.55 31.57

Table 3 Precision and recall DEPREL of 'kāraka and non-kāraka relation' on MST Parser

In the above mentioned Table 2 and 3, consists of  seven columns, among them the first column

denotes  dependency  relation  (deprel),  second  to  seventh  columns  explains  about  the  deprel

occurrences and accuracies of both the parsers. The keywords in the first row of table 2 and 3 are

mentioned below.

a) deprel-  dependency relations 

b) treebankcount - Total number of tokens in the test data.

c) correctcounter - The number of tokens were correctly identified in the parsed data

d) parsercount – Total number of tokens in the parsed data.

e) precision: correctcounter / parsercount. 

f) recall: correctcounter / treebankcount.
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g) fscore: It is the harmonic mean of precision and recall.

fscore = (2 × precision × recall) / ( precision + recall).

In  both  the  parsers,  the  parser  count  has  increased  and  decreased  than  treebank  count.  For

example, treebank count of  k1 is  417 where as parser count has increased to  457 and  369 are

parsed correctly in Malt similarly parser count is increased to 513 and 359 are parsed correctly

in MST. In the same way, treebank count of k4a is 27 where as parser count has decreased to 9

and  6 are  parsed correctly in Malt similarly  parser count is  decreased to  11 and 6 are  parsed

correctly in MST. 

McDonald and Nivre, (2007) says that “Malt is good at short distance labeling and MST is good

at long distance labeling”. Telugu treebank has very less non-projective data. Telugu sentences

which are having more than 10 words are less in our dataset because we have taken the sentences

from different grammar books of Telugu. Because Malt performs better in short distance label, it

has secured good score in ‘k1’ and ‘k2’ dependency label. In other short distance label cases also

Malt  parser  performed  better  than  MST parser.  The  next  section  discusses  about  the  error

analysis of Telugu Parsed sentences.

5. Error Analysis of Telugu Parsed Sentences

This section deals with the error analysis of Telugu parsed sentences. We have developed the

Telugu treebank data (2424 sentences) and implemented by using the two data-driven parsers

(Malt and MST)(Discussed in Section 4). The Telugu test data is categorized according to the

output given by the parsers. The test was done by using the Malt evaluation tool which has an

underlying automatic mechanism to extract the most frequent incorrect parsed output which are

occurred in the Telugu parsed test dataset. These sentences are divided into two parts viz. correct

parsed output and incorrect parsed output. The incorrect parsed output is taken into consideration

for the error analysis of the incorrect parsed output. Parsers extracted the most seven frequent

errors from the test data (output). They are ‘k2’ (karma) instead of ‘k1’ (kartā) 31 times, ‘k1’

(kartā) instead of ‘k2’ (karma) for 27 times, ‘k4’ (sampradāna) instead of ‘k4a’ (anubhava kartā)

for 14 times, ‘k1’ (kartā) instead of ‘nmod’ (noun modifier) for 7 times, ‘k1’ (kartā) instead of

‘k7t’ (kālādhikaran ṇa) for 7 times, ‘k7p’ (dēśādhikaran ṇa) instead of ‘k7’ (adhikaran ṇa) for 6 times,
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‘vmod’ (verb modifier)  instead of ‘rh’ (hētu)  for 11 times etc .  Among these seven frequent

errors,  here  we  discuss  the  first  frequent  error  and  explained  with  appropriate  linguistic

explanation. The analysis of the first frequent incorrect parsed outputs is given below. 

5.1 “k1” instead of “k2”: 27 times (Passive constructions)

The example which is illustrated in this section is a passive construction in Telugu. Most of the

time, we come across with passive constructions only in written Telugu, where as the same does

not occur in spoken Telugu. To make passive constructions in Telugu, one has to use '-bad ḍu' with

the verbal root and the postpositions '-cēta' for nouns in passive constructions. The examples are

discussed below. 

1. bhāratamḍ/NNP vyāsud ṇi/NNP racimḍpabad ḍimḍdi/VM. ‘vyāsud ḍi was written by Vyasa’

The POS tag of the each word is separated by a slash(/). Here NNP- Proper Noun, VM- Finite

Verb. The following dependency relations of the example1. Here, we marked the dependency

relations between two inter chunks in a given sentence. Dependency relations of the example1

are as follows.

k2(bhāratamḍ, racimḍpabad ḍimḍdi)

k1(vyāsud ḍi, racimḍpabad ḍimḍdi)

finite verb(racimḍpabad ḍimḍdi). Here we renamed root as finite verb for our convenient.

The parsed output of the above example1 is given by the Malt parser. Here, we highlighted the

incorrect Telugu parsed output which is generated by malt evaluation tool. 

k1(bhārataṃṃ, raciṃṃpabad ṃiṃṃdi)

k2(vyāsud ṃi, raciṃṃpabad ṃiṃṃdi)

finite verb(raciṃṃpabad ṃiṃṃdi).

In  the above illustrated  example  bhāratamḍ  vyāsud ḍi  cēta  racimḍpabad ḍimḍdi.   ‘Bharatam was

written by Vyasa’. Whenever the pattern, simple verb + -bad ḍu suffix with  cēta a postposition

occurs the parsed output is marked  vyāsud ḍi cēta as  k2(karma) where actually should mark as

Language in India www.languageinindia .com  UGC Approved Journal No. 49042

Vol. 19:1 January 2019 <185-197>



k1(kartā). This kind of patterns were not trained by the parsers properly. The reasons may be the

input data (trained data) might be having few number of such sentences with ‘-bad ṃu’ and ‘-cēta’

constructions or the parser could not learn this pattern properly. Hence the parser failed to learn

this  linguistic  rule  which is  why  k1(kartā) is  marked as  k2(karma).  If  the  above mentioned

linguistic  cue is  given as  training to  the parsers,  it  may mark  such kind of  examples  as  k1

accurately. 

2. amḍduvalla/RP nityamḍ/NN gāyatri/NNP japimḍcu/VM. ‘Because of, always chant Gayatri’

Here  RP- Particle,  NNP-Proper  Noun,  VM-  Finite  Verb.  Here  we  marked  the  dependency

relations  between two inter  chunks  in  a  given sentence.  Dependency relations  of  the  above

mentioned example is as follows.

rh(amḍduvalla, japimḍcu)

k7t(nityaM, japimḍcu)

k2(gāyatri, japimḍcu)

finite verb(japimḍcu)

The parsed output of the above example 2 is given by the Malt parser. Here, we highlighted the

incorrect Telugu parsed output which is generated by malt evaluation tool. 

k1(aṃṃduvalla, japiṃṃcu)

k7t(nityaM, japimḍcu)

k1(gāyatri, japiṃṃcu)

finite verb(japimḍcu)

The example 2 given above is classical Telugu sentence.  Usually, an animate object  always

prefers  the  accusative case marker ‘-ni’.  In  the  present  example  amḍduvalla  nityamḍ gāyatri

japimḍcu, gāyatri doesn't contain the accusative case marker which always comes for the animate

object.  When  we  come  across  such  kind  of  sentences,  we  mark  k-relations  by  using  the

syntactico-semantico relations accurately. However, the absence of a case marker (accusative
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case marker/vibhakti) has become an issue to the parser to mark k-relations that is why  k2 is

marked as k1. 

6. Conclusion

In this paper, we first explored the two data-driven parsers Malt and MST. We have used the

same Telugu treebank for both the parsers. The treebank has very less non-projective sentences

nearly 1.56%.  We developed the best model for Malt as well as for MST. We found overall Malt

gives better  performance than MST. Malt  system secured labeled attachment score (LAS) of

79.67% where MST secured 73.62%. It has proved that Malt Parser performed better than MST

in case of short distance label (Cf. McDonald and Nivre, 2007). Our future research will  be

proceeded to develop a hybrid system by combining both Malt  and MST parsed output.  We

extracted the most 7 frequent incorrect parsed outputs and explained the frequently incorrect

tested output (i.e.  k2 <k1)  with proper linguistic input. Apart from this, we also proved that

linguistic knowledge will improve the performance of the data-driven parsers. 
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