
Sentence Boundary Disambiguation in Kannada Texts
Mona Parakh

Reader-Research Officer

ldc-monaparakh@ciil.stpmy.soft.net

Rajesha N.
Senior Technical Officer

ldc-rajesha@ciil.stpmy.soft.net

Ramya M.
Senior Technical Officer

ldc-ramya@ciil.stpmy.soft.net

Linguistic Data Consortium for Indian Languages

Central Institute of Indian Languages

Mysore, India

www.ldcil.org

Abstract - The proposed paper reports the work on

developing a system for identifying valid sentence boundaries in

Kannada texts and fragmenting the text into sentences. The task

of sentence boundary identification is made challenging by the

fact that the period, question marks and exclamation marks, do

not always mark the sentence boundary. This paper particularly

addresses the issue of disambiguating period which can be a

sentence boundary marker as well as a marker of abbreviation

in Kannada. This methodology is devised to fragment corpora

into sentences without any intermediate tools and resources like

NER or Abbreviation List.

I. INTRODUCTION

As an important and challenging task sentence boundary

disambiguation (SBD) is the problem in natural language

processing of deciding where sentences begin and end. Often

natural language processing tools require their input to be

divided into sentences for various purposes such as building

bilingual parallel corpora. “A parallel corpus is a collection

of texts in two languages, one of which is the translation

equivalent of the other. Although parallel corpora are very

useful resources for many natural languages processing

applications such as building machine translation systems,

multi-lingual dictionaries and word sense disambiguation,

they are not yet available for many languages of the world”

[2].

In order to process information from parallel text, it is

first necessary to align the two texts at some level, typically

at the level of paragraph or sentence. As in Reference [1], by

‘align’ is meant the association of chunks of text in the one

document with their translation or equivalent text in the other

document. In order to align text at the level of sentences, it is

important to define and identify a sentence.

For the purpose of this work, we define a Sentence as a

segment of text separated by delimiters such as Exclamation

mark “!”, Question Mark “?”, Period “.” and new line

character. However, these symbols do not always function as

sentence delimiters; they can be used for other purposes,

thereby making sentence boundary identification a non-trivial

task. Sentence boundary identification is challenging because

punctuation marks are often ambiguous.

Among the Indian languages Devanagari based scripts

have the unique sentence boundary marker “।” known as

‘poorna viraam’ (full stop) which is different from the

abbreviation marker - period. Hence, in such languages

segmenting sentences is a relatively trivial task. But

languages like English use period as a sentence boundary

maker as well as abbreviation marker. As per the English

examples given in Reference [2], “a period can also be used

as a decimal point in numbers, in ellipses, in abbreviations

and in email-addresses. The exclamation mark in the name of

a web site Yahoo! may not signify a sentence boundary and

so is the question mark in Which? - the name of a magazine”.

Like in English and many other languages even Kannada

uses Period as a sentence boundary maker and for

abbreviations. This paper attempts to handle this ambiguity of

the Period in Kannada texts.

II. METHOD

Of the few papers that are available on work related to

sentence boundary identification, Riley [4] uses a decision-

tree based approach and claims a 99.8% performance on the

Brown’s Corpus. Reynar and Ratnaparkhi [3] use a maximum

entropy approach to identify sentence boundaries. Some of

the other common algorithms for sentence boundary

identification store the Standard abbreviation as a check list;

however the approach proposed in this paper assumes that

since abbreviations do not form a closed set, one cannot list

all possible abbreviations.

In handling the ambiguity of period in this paper, we are

considering the word length as a feature. Based on the study

of Kannada corpus we can safely claim that it is usually the

longer words that occur at the end of sentences. If a short

word occurs with a period then it is most likely either an

Abbreviation or a Salutation. Based on the corpus study, a

minimal threshold for word length was decided. A list was

created of words having length below the threshold and

which were not abbreviations. A fairly exhaustive list of

some 436 such words was obtained from (approx 4.2 million

words) corpus. But the list was kept open-ended in order to

accommodate further additions. However, after implementing

the algorithm only a few Abbreviations which were above the

threshold caused over segmentation of sentences.

The detection of abbreviations is an important step in the

process of sentence boundary detection. Drawing upon

Reference [5] abbreviations can be categorized into three

classes TRAB, ITRAB and AMAB.

Language in India www.languageinindia.com 11:5 May 2011 Special Volume: Problems of Parsing in Indian Languages

Vijayanand Kommaluri and L. Ramamoorthy, Editors Problems of Parsing in Indian Languages 17

Language in India www.languageinindia.com 11:5 May 2011 Special Volume: Problems of Parsing in Indian Languages

Vijayanand Kommaluri and L. Ramamoorthy, Editors Problems of Parsing in Indian Languages 17

a) TRAB: These are transitive abbreviations, i.e.,

abbreviations that take an object and never end the

sentence. To take an example from Kannada:

Kannada script: �. హ�ౕ�.
Transliteration: mi. harIsh.

Translation: Mr. Harish.

b) ITRAB: These are intransitive abbreviations that do

not take an object. Even though Indian languages follow a

relatively free word order in a sentence, normally Intransitive

abbreviations do not come at the end of the sentence because,

they are the subject of the sentence. Any intransitive

abbreviation in the middle of a sentence will be handled by

the algorithm. Following is an example from Kannada:

Kannada script: తమ� 	ట�	దన �ాటకవను� అ.న.కృ.

౧౯౨౪ర� బ�ెదరు.
Transliteration: tamma moTTamodalina nATakavannu

a.na.kx. 1924ralli baredaru.

Translation: A.Na.Kru. Wrote his first ever drama in 1924.

c) AMAB: These refer to abbreviations which are

ambiguous, where a word is homonymous to an abbreviation.

Kannada script: అద � !ా.
Transliteration: adannilli tA.

Translation: Bring that here.

Kannada script: !ా. ౧౫-౦౮-౧౯౪౭
Transliteration: tA. 15-08-1947

Translation: Date. 15-08-1947

In the above example the verb ‘bring’ is homonymous to

the standard abbreviation for ‘date’. “!ా.”/tA., could be the

verb meaning “bring” occurring at the end of the sentence

with a period marker or “!ా.”/tA., could be an abbreviation

for “!ా�ౕఖు”/ tArIkhu meaning “date”.

III. ALGORITHM DESIGN

Following is an algorithm devised to fragment the text

into sentences by solving the ambiguity of period (“.”) as

sentence marker and abbreviation in Kannada. The Algorithm

uses two word lists as resource, viz. valid sentence ending

word list (L1) and an ambiguous word list (L2) extracted

from the corpus. This algorithm will disambiguate a period

ending token as sentence ending word or abbreviation based

on the token length. L1- has words having length below a

threshold. L2- will have words with a length below a

threshold and homonymous to an abbreviation of that

language. Both L1 and L2 are extracted from corpus, and

they make a small set of words. It should be noted that in this

paper, the length of words refers to the length of Unicode

characters and not the count of aksharas

ALGORITHM TO IDENTIFY PERIOD AS SENTENCE BOUNDARY

1. Preprocess the text in order to remove any space between a period (“.”) and its previous word.

2. Segment the text into sentences

1. Preprocess the text in order to remove any space between a period (“.”) and its previous word.
 1.1 Open Text file

 1.2 Replace all “<space>.” with “.”

2. Segment the text into Sentences
 2.1 find the position of the Next Sentence Marker in the text

 2.1.1 WHILE starting position is less then Text length
 2.1.2 If the Next Immediate sentence Marker is “?” or “!” or New Line then Segment the text from Starting position to
 Sentence Marker
 2.1.3 If the Next Immediate sentence Marker is a period and not a Number before dot then

 2.1.3.1 Get the length of text between last space of text to period (Get the length of last word)
 2.1.3.2 If the Last word Length is below 5 (Threshold) then Check the word with L1
 2.1.3.2.1 If the Last word is in L1 then check the word with L2

 2.1.3.2.1.1 If the Last word is not in L2 then Segment the text from Starting position to Sentence Marker.
 2.1.3.3 If the Last word length is Equal or above threshold then check for the other possible dots in the Last word
 2.1.3.3.1 If there is no other possible dots in word then Segment the text from Starting position to Sentence
 Marker.

 2.1.3.3.2 If there are other possible dots in word then check the Distance between the end dot and the dot
 end-but-one.
 2.1.3.3.2.1 If Distance between the end dot and the dot end-but-one is above 5 (Threshold) then

 Segment the text from Starting position to Sentence Marker
 2.1.4 If the Next Immediate sentence Marker is a period and a Number before dot then Segment the text from Starting
 position to Sentence Marker.
 2.1.5 End WhileEnd WhileEnd WhileEnd While

3. End

Language in India www.languageinindia.com 11:5 May 2011 Special Volume: Problems of Parsing in Indian Languages

Vijayanand Kommaluri and L. Ramamoorthy, Editors Problems of Parsing in Indian Languages 18

Language in India www.languageinindia.com 11:5 May 2011 Special Volume: Problems of Parsing in Indian Languages

Vijayanand Kommaluri and L. Ramamoorthy, Editors Problems of Parsing in Indian Languages 18

IV. EVALUATION

In order to test the efficiency of the algorithm, a

corpus of 7330 sentences (approx. 69000 words) was taken.

Sentence Identification errors manually corrected and

checked revealed that without using the algorithm and by a

plain pattern matching of delimiters, a baseline accuracy of

91.33% was obtained. However, the accuracy increased to

99.14% after implementing the algorithm on the same

corpus.

Out of the 7330 sentences in the corpus, the blind

pattern matching without the algorithm showed errors in

636 sentences whereas after implementing the algorithm

only 63 sentences were wrongly recognized. An increase of

7.81% from the baseline was noted after implementing the

algorithm. The main errors occurred due to unclean corpus.

Also, only a few Abbreviations which were above the

threshold caused the over segmentation of certain sentences.

The corpus used for the testing purpose was mainly from

two domains – newspaper and literature.

V. CONCLUSION

In this paper we have described an algorithm for

sentence boundary determination for Kannada. This

methodology will hopefully be useful to resolve the

problems of ambiguity of Period “.” in case of text

alignment tools, machine translation tools, KWIC KWOC

Retrievers.

This method can be employed also for other languages.

Since the check list used in the algorithm is open, it

facilitates users to add more words to the list. However,

depending on the language the length of the check lists may

vary, as also the threshold.

Good performance has been obtained using this

algorithm and it considerably increases the performance

from the baseline.

ACKNOWLEDGMENT

Our special thanks to Prof. Kavi Narayana Murthy

(CIS, UoH, Hyderabad; currently CIIL fellow) for his

guidance, insightful comments and suggestions which

helped us enormously in improving the evaluation work as

also the paper. We are heartily thankful to our Project

Head, Dr. L. Ramamoorthy, and the LDC-IL team members

for their encouragement and support.

 REFERENCES

[1]. Harold Somers, “Bilingual parallel corpora and Language

Engineering,” in the Anglo-Indian Workshop on Language Engineering for

South-Asian Languages, (LESAL), Mumbai, 2001.

[2]. Hla Hla Htay, G. Bharadwaja Kumar, and Kavi Narayana Murthy,

“Constructing English-Myanmar Parallel Corpora,” Proceedings of ICCA

2006: International Conference on Computer Applications, Yangon,

Myanmar, pp 231-238, February 2006.

[3]. J. Reynar, and A. Ratnaparkhi, “A Maximum Entropy Approach

to Identifying Sentence Boundaries,” in Proceedings of the Fifth

Conference on Applied Natural Language Processing, Washington

D.C, 1997, pp. 16-19.

[4]. Riley, Michael D.. “Some applications of tree-based modeling to

speech and language,” in DARPA, Speech and Language Technology

Workshop, Cape Cod, Massachusetts, 1989, pp. 339-352.

[5]. Trond Trosterud, Børre Gaup, Saara Huhmarniemi, “Preprocessor for
Sámi language tools”, The Norwegian Sami Parliament, 2004. Available

online at www.divvun.no/doc/ling/preprocessor.html

Language in India www.languageinindia.com 11:5 May 2011 Special Volume: Problems of Parsing in Indian Languages

Vijayanand Kommaluri and L. Ramamoorthy, Editors Problems of Parsing in Indian Languages 19

Language in India www.languageinindia.com 11:5 May 2011 Special Volume: Problems of Parsing in Indian Languages

Vijayanand Kommaluri and L. Ramamoorthy, Editors Problems of Parsing in Indian Languages 19

