
Text Extraction for an Agglutinative Language

Sankar K, Vijay Sundar Ram R and Sobha Lalitha Devi
AU-KBC Research Centre

MIT Campus of Anna University

Chennai, India

 Abstract- The paper proposes an efficient algorithm for sentence

ranking based on a graph theoretic ranking model applied to text

summarization task. Our approach employs word frequency

statistics and a word positional and string pattern based weight

calculation for weighing the sentence and to rank the sentences.

Here we have worked for a highly agglutinative and

morphologically rich language, Tamil.

I. INTRODUCTION

 The enormous and on-going increase of digital data in

internet, pressurize the NLP community to come up with a

highly efficient automated text summarization tools. The

research on text summarization is boosted by the various

shared tasks such as TIPSTER SUMMAC Text

Summarization Evaluation task, Document Understanding

conference (DUC 2001 to 2007) and Text Analysis

conferences.

 A variety of automated summarization schemes have been

proposed recently. NeATS [4] is a sentence position, term

frequency, topic signature and term clustering based approach

and MEAD [10] is a centroid based approach. Iterative graph

based Ranking algorithms, such as Kleinberg’s HITS

algorithm [3] and Google’s PageRank [1] have been

successfully used in web-link analysis, social networks and

more recently in text processing applications [8], [7], [2] and

[9]. These iterative approaches have a high time complexity

and are practically slow in dynamic summarization. The works

done in Text Extraction for Indian languages is comparatively

less.

 In this paper we have discussed a novel automatic and

unsupervised graph based ranking algorithm, which gives

improved results compared to other ranking algorithms in the

context of the text summarization task. Here we have worked

for Tamil.

II. TEXT SUMMARIZATION AND TEXT RANKING

 Text summarization is process of distilling the most

important information from the set of source to provide a

abridge version for particular user and tasks. The text

summarization is also done by ranking in the sentences in the

given source test. Here we have proposed a graph based text

ranking approach.

 Graph based algorithm is essentially a way of deciding the

importance of a vertex within a graph, based on global

information recursively drawn from the entire graph. The

basic idea here is that of ‘voting’ or ‘recommendation’. When

one vertex links to the other vertex, it is like casting a vote for

that vertex. The vertex becomes important when it links with

more number of vertices. The importance of vertex casting the

vote determines how important the vote itself is [10].

 The proposed graph based text ranking algorithm consists of

two types of measure (1) Word Frequency Analysis; (2) A

word positional and string pattern based weight calculation.

Based on the above two scores, the ranking of sentences is

done.

 The algorithm is carried out in two phases. The weight

metric obtained at the end of each phase is averaged to obtain

the final weight metric. Sentences are sorted in descending

order of weight.

A. Graph

 Let G (V, E) be a weighted undirected complete graph,

where V is set of vertices and E is set of weighted edges.

S1

S2

S3

S6

S5

S4
Fig. 1. A complete undirected graph

 In figure 1, the vertices in graph G represent the set of all

sentences in the given document. Each sentence in G is related

to every other sentence through the set of weighted edges in

the complete graph.

B. Phase 1 : Word Frequency Analysis

 In Word Frequency Analysis, we find the affinity weight

(AW) for each word in the sentence by using the formula 1.

The sentence weight (SW) is calculated by averaging the AW

of all words in the sentence.

 The affinity weight for each word is calculated by frequency

of the given word in the sentence divided by number of words

in the sentence.

Language in India www.languageinindia.com 11:5 May 2011 Special Volume: Problems of Parsing in Indian Languages

Vijayanand Kommaluri and L. Ramamoorthy, Editors Problems of Parsing in Indian Languages 56

Language in India www.languageinindia.com 11:5 May 2011 Special Volume: Problems of Parsing in Indian Languages

Vijayanand Kommaluri and L. Ramamoorthy, Editors Problems of Parsing in Indian Languages 56

Word Frequency in Tamil:

 As Tamil is a morphologically rich and a highly agglutinative

language, getting the frequency of the words is not straight

forward. The text has to be preprocessed with a morph-

analyser to collect the corresponding root words, as all the

words in the sentences will be in inflected form (root +

suffixes). Given a word to the morph-analyser, it will split the

word into root and its suffix and return the valid root word

alone. Example

 நபங்கள஭ -> நபம் + கள் + ஐ -> நபம்

 marangkaLai -> maram + kaL + ai -> maram

 (tree + plural +acc) tree plural acc tree

 Let the set of all sentences in document S= {si | 1 ≤ i ≤ n},

where n is the number of sentences in S. For a sentence si= {wj

| 1 ≤ j ≤ mi} where mi is the number of words in sentence si, (1

≤ i ≤ n) the affinity weight AW of a word wj is calculated as

follows:
(,)

()
()

j k

k
j

IsEqual w w
w SAW w

WC S

 


 (1)

 where S is the set of all sentences in the given document, wk

is a word in S, WC (S) is the total number of words in S and

function IsEqual(x, y) returns an integer count 1 if x and y are

equal else integer count 0 is returned by the function.

 Then, we find the sentence weight SW (si) for each sentence

si (1 ≤ i ≤ n) as follows:
1

() ()i j

i
j i

SW s AW w
m w s


 


 (2)

 At the end of phase 1, the graph vertices hold the sentence

weight as shown in figure 3 for graph constructed using the

following sentences.

[1] தாஜ் நகால், இந்தினாவிலுள்஭

஥ிள஦வுச்சின்஦ங்களுள், உ஬க அ஭வில்

஧஬ருக்குத் ததரிந்த ஑ன்஫ாகும்.

Taj Mahal, among the memorials in India, is known word

wide.

[2] இது ஆக்பாவில் அளநந்துள்஭து.

This is located in Agra.

[3] முழுவதும் ஧஭ிங்குக் கற்க஭ா஬ா஦

இக்கட்டிடம், ஆக்பா ஥கரில் னமுள஦ ஆற்஫ின்

களபனில் கட்டப்஧ட்டுள்஭து .

This building fully made of marbles is built on the shores

Yamuna river in Agra.

[4] இது காத஬ின் சின்஦நாக உ஬கப் புகழ்

த஧ற்஫து.

This is world famous as a symbol of love.

[5] ஏழு உ஬க அதிசனங்க஭ின் புதின ஧ட்டின஬ில்

தாஜ் நகாலும் சசர்க்கப்஧ட்டுள்஭து.

In the new seven wonders of the world Taj Mahal is also

included.

[6] இக்கட்டிடம் முக஬ான நன்஦஦ா஦

ஷாஜகா஦ால், இ஫ந்து ச஧ா஦ அவ஦து இ஭ம்

நள஦வி மும்தாஜ் ஥ிள஦வாக 22 ,000

஧ணினாட்கள஭க் தகாண்டு 1631 முதல் 1654 ஆம்

ஆண்டுக்கு இளடனில் கட்டிமுடிக்கப்஧ட்டது .

Mughal emperor Sharjahan built this building using 22,000

workers, from 1631 to mid of 1654, in memory of young wife

Mumthaz .

Fig. 3. Sample graph of Sentence weight calculation in phase 1.

C. Phase 2 : A Word Positional and String Pattern Based

Weight Calculation

 In phase 2, a word positional and string pattern based weight

in all the vertices is calculated using Levenshtein Similarity

measure (LSW), which uses Levenshtein Distance for

calculating the weight.

 The vertex weight is calculated by summing all the LSW

and dividing it with number of sentences.

Levenshtein Distance

Levenshtein distance (LD) is a measure of the similarity

between two strings source (s) and target (t). The distance is

the minimum number of deletions, insertions, or substitutions

required to transform s into t.

 The LD algorithm is illustrated by the following example

 LD (RAIL, MAIL) is 1

 LD (WATER,METER) is 2

 Similarly, the LD calculation is same for words in Tamil, but

there are three and two character letters in Tamil which we

have to consider as single character while calculating the

distance, as shown below.

 LD(தசால்,வால்) is 1

 LD(வரும்஧டி,என்஦ப்஧டி) is 4

Language in India www.languageinindia.com 11:5 May 2011 Special Volume: Problems of Parsing in Indian Languages

Vijayanand Kommaluri and L. Ramamoorthy, Editors Problems of Parsing in Indian Languages 57

Language in India www.languageinindia.com 11:5 May 2011 Special Volume: Problems of Parsing in Indian Languages

Vijayanand Kommaluri and L. Ramamoorthy, Editors Problems of Parsing in Indian Languages 57

Levenshtein Similarity Weight

 Levenshtein Similarity Weight is calculated between the

sentences, considering two sentences at an instance. This is

calculated by dividing the difference of maximum length

between two sentences and LD between the two sentences by

maximum length between two sentences as shown in formula

6.

 Consider two sentences, sentence1 and sentence2 where ls1

is the length of sentence1 and ls2 be the length of sentence2.

Compute MaxLen=maximum (ls1, ls2). Then LSW between

sentence1 and sentence2 is the difference between MaxLen

and LD, divided by MaxLen. Clearly, LSW lies in the interval

0 to 1. In case of a perfect match between two words, its LSW

is 1 and in case of a total mismatch, its LSW is 0. In all other

cases, 0 < LSW <1. The LSW metric is illustrated by the

following example.

 Considering these strings as sentences,

 LSW (ABC, ABC) =1

 LSW (ABC, XYZ) =0

 LSW (ABCD, EFD) =0.25

Similarly

 LSW (என்஦ப்஧டி, வரும்஧டி) = (6-4)/6 = 0.3334

 Levenshtein similarity weight is calculated by the equation

(,) (,)
(,)

ˆ(,)

i j i j
i j

i j

MaxLen s s LD s s
LSW s s

MaxLen s s


 (6)

 where, is and js are the sentences.

 Hence before finding the LSW, we have to calculate the LD

between each sentence.

Let S = {si | 1 ≤ i ≤ n} be the set of all sentences in the given

document; where n is the number of sentences in S. Further, si

= {wj | 1 ≤ j ≤ m}, where m is the number of words in sentence

si.

Fig. 4. Sample graph for Sentence weight calculation in phase 2

Each sentence is ; 1 ≤ i ≤ n is represented as the vertex of the

complete graph as in figure 4 and iS={s |1 i n}  . For the

graph in figure 4, find the Levenshtein similarity weight LSW

between every vertex using equation 6. Find vertex weight

(VW) for each string is ; 1 ≤ l ≤ n by

1
() (,)

l

l l i

i

VW s LSW s s
n

s s S



  

 (7)

3. TEXT RANKING

 Obtaining the sentence weight (SW(si)) and the vertex

weight VW(si), the ranking score is calculated is the formula

8, where the average of the two scores are found.

 The rank of sentence si; 1 ≤ i ≤ n is computed as

ˆ() ()
() ;1

2

i i
i

SW s VW s
Rank s i n


   (8)

 where, ()iSW s is calculated by equation 2 of phase 1 and

ˆ()iVW s is found using equation 7 of phase 2. The ranking

scores for the sentences (si; 1 ≤ i ≤ n,) are arranged in

descending order of their ranks.

 ()iSW s in phase 1 holds the sentence affinity in terms of

word frequency and is used to determine the significance of

the sentence in the overall raking scheme. ˆ()iVW s in phase 2

helps in the overall ranking by determining largest common

subsequences and other smaller subsequences then assigning

weights to it using LSW. Further, since named entities are

represented as strings, repeated occurrences are weighed

efficiently by LSW, thereby giving it a relevant ranking

position.

4. EVALUATION AND DISCUSSION

 We have used the ROUGE evaluation toolkit to evaluate the

proposed algorithm. ROUGE, an automated summarization

evaluation package based on N-gram statistics, is found to be

highly correlated with human evaluations [4].

 The evaluations are reported in ROUGE-1 metrics, which

seeks unigram matches between the generated and the

reference summaries. The ROUGE-1 metric is found to have

high correlation with human judgments at a 95% confidence

level, so this is used for evaluation. The present Graph-based

Ranking Algorithms for Text Extraction works with Rouge

score of 0.4723.

 We manually created the reference summaries for 150

documents taken from online news articles. The reference

summaries and the summaries obtained by our algorithm are

compared using the ROUGE evaluation toolkit, which is

presented in Table 1. For each article, our proposed algorithm

generates a 100-words summary.

TABLE I

ROUGE SCORE

 Score

ROUGE-1 0.4723

Language in India www.languageinindia.com 11:5 May 2011 Special Volume: Problems of Parsing in Indian Languages

Vijayanand Kommaluri and L. Ramamoorthy, Editors Problems of Parsing in Indian Languages 58

Language in India www.languageinindia.com 11:5 May 2011 Special Volume: Problems of Parsing in Indian Languages

Vijayanand Kommaluri and L. Ramamoorthy, Editors Problems of Parsing in Indian Languages 58

 The methodology performs well even for the agglutinative

languages. For the word frequency calculation we feed only

the root words instead of the agglutinative words to get proper

frequency count. In the phase 2 where the Levenshtein

Similarity Weight, the distance varies more as the all the

sentences have different inflected and agglutinative words.

Again in word frequency, the pronouns occurring in the same

sentence, which actual reference to one of the noun phrase

(occurs instead of a noun phrase), cannot to be counted.

Conclusions

 In this paper, we introduced Graph Based Ranking algorithm

for text ranking. Here we have worked for Tamil, a south

Dravidian language. Here we have shown the necessity of

getting the root words for Text ranking. The architecture of the

algorithm helps the ranking process to be done in a time

efficient way. This text ranking algorithm is not a domain

specific and also does not require any annotated corpora. This

approach succeeds in grabbing the most important sentences

based on the information exclusively from the text itself;

whereas other supervised ranking systems do this process by

training on summary collection.

5. CONCLUSIONS

 In this paper, we introduced Graph Based Ranking algorithm

for text ranking. Here we have worked for Tamil, a south

Dravidian language. Here we have shown the necessity of

getting the root words for Text ranking. The architecture of the

algorithm helps the ranking process to be done in a time

efficient way. This text ranking algorithm is not a domain

specific and also does not require any annotated corpora. This

approach succeeds in grabbing the most important sentences

based on the information exclusively from the text itself;

whereas other supervised ranking systems do this process by

training on summary collection.

REFERENCES

 [1] Brin and L. Page. 1998. The anatomy of a large-scale hypertextualWeb

search engine. Computer Networks and ISDN Systems, 30 (1 – 7).
[2] Erkan and D. Radev. 2004. Lexpagerank: Prestige in multi-document text

summarization. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, Barcelona, Spain, July.

[3] Kleinberg. 1999. Authoritative sources in a hyperlinked environment.

Journal of the ACM, 46(5):604-632.
[4] Lin and E.H. Hovy. From Single to Multi-document Summarization: A

Prototype System and its Evaluation. In Proceedings of ACL-2002.

[5] Lin and E.H. Hovy. 2003a. Automatic evaluation of summaries using n-
gram co-occurrence statistics. In Proceedings of Human Language

Technology Conference (HLT-NAACL 2003), Edmonton, Canada, May.

[6] Lin and E.H. Hovy. 2003b. The potential and limitations of sentence
extraction for summarization. In Proceedings of the HLT/NAACL

Workshop on Automatic Summarization, Edmonton, Canada, May.

[7] Mihalcea. 2004. Graph-based ranking algorithms for sentence extraction,
applied to text summarization. In Proceedings of the 42nd Annual

Meeting of the Association for Computational Linguistics (ACL 2004)

(companion volume), Barcelona, Spain.

[8] Mihalcea and P. Tarau. 2004. TextRank - bringing order into texts. In

Proceedings of the Conference on Empirical Methods in Natural

Language Processing (EMNLP 2004), Barcelona, Spain.
[9] Mihalcea, P. Tarau, and E. Figa. 2004. PageRank on semantic networks,

with application to word sense disambiguation. In Proceedings of the

20th International Conference on Computational Linguistics (COLING

2004), Geneva, Switzerland.

[10] Radev, H. Y. Jing, M. Stys and D. Tam. Centroid-based summarization

of multiple documents. Information Processing and Management, 40:

919-938, 2004.

Language in India www.languageinindia.com 11:5 May 2011 Special Volume: Problems of Parsing in Indian Languages

Vijayanand Kommaluri and L. Ramamoorthy, Editors Problems of Parsing in Indian Languages 59

Language in India www.languageinindia.com 11:5 May 2011 Special Volume: Problems of Parsing in Indian Languages

Vijayanand Kommaluri and L. Ramamoorthy, Editors Problems of Parsing in Indian Languages 59

