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  Abstract- The paper proposes an efficient algorithm for sentence 

ranking based on a graph theoretic ranking model applied to text 

summarization task. Our approach employs word frequency 

statistics and a word positional and string pattern based weight 

calculation for weighing the sentence and to rank the sentences. 

Here we have worked for a highly agglutinative and 

morphologically rich language, Tamil. 

 

I.    INTRODUCTION  

 

   The enormous and on-going increase of digital data in 

internet, pressurize the NLP community to come up with a 

highly efficient automated text summarization tools. The 

research on text summarization is boosted by the various 

shared tasks such as TIPSTER SUMMAC Text 

Summarization Evaluation task, Document Understanding 

conference (DUC 2001 to 2007) and Text Analysis 

conferences.  

   A variety of automated summarization schemes have been 

proposed recently. NeATS [4] is a sentence position, term 

frequency, topic signature and term clustering based approach 

and MEAD [10] is a centroid based approach. Iterative graph 

based Ranking algorithms, such as Kleinberg’s HITS 

algorithm [3] and Google’s PageRank [1] have been 

successfully used in web-link analysis, social networks and 

more recently in text processing applications [8], [7], [2] and 

[9]. These iterative approaches have a high time complexity 

and are practically slow in dynamic summarization. The works 

done in Text Extraction for Indian languages is comparatively 

less. 

   In this paper we have discussed a novel automatic and 

unsupervised graph based ranking algorithm, which gives 

improved results compared to other ranking algorithms in the 

context of the text summarization task. Here we have worked 

for Tamil. 

 

II.    TEXT SUMMARIZATION AND TEXT RANKING 

 

   Text summarization is process of distilling the most 

important information from the set of source to provide a 

abridge version for particular user and tasks. The text 

summarization is also done by ranking in the sentences in the 

given source test. Here we have proposed a graph based text 

ranking approach.  

   Graph based algorithm is essentially a way of deciding the 

importance of a vertex within a graph, based on global 

information recursively drawn from the entire graph. The 

basic idea here is that of ‘voting’ or ‘recommendation’. When 

one vertex links to the other vertex, it is like casting a vote for 

that vertex. The vertex becomes important when it links with 

more number of vertices. The importance of vertex casting the 

vote determines how important the vote itself is [10]. 

   The proposed graph based text ranking algorithm consists of 

two types of measure (1) Word Frequency Analysis; (2) A 

word positional and string pattern based weight calculation. 

Based on the above two scores, the ranking of sentences is 

done.  

   The algorithm is carried out in two phases. The weight 

metric obtained at the end of each phase is averaged to obtain 

the final weight metric. Sentences are sorted in descending 

order of weight. 

 

A.   Graph 

   Let G (V, E) be a weighted undirected complete graph, 

where V is set of vertices and E is set of weighted edges. 
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Fig. 1. A complete undirected graph 

 

   In figure 1, the vertices in graph G represent the set of all 

sentences in the given document. Each sentence in G is related 

to every other sentence through the set of weighted edges in 

the complete graph. 

 

B.   Phase 1 : Word Frequency Analysis 

   In Word Frequency Analysis, we find the affinity weight 

(AW) for each word in the sentence by using the formula 1. 

The sentence weight (SW) is calculated by averaging the AW 

of all words in the sentence. 

   The affinity weight for each word is calculated by frequency 

of the given word in the sentence divided by number of words 

in the sentence. 
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Word Frequency in Tamil: 

  As Tamil is a morphologically rich and a highly agglutinative 

language, getting the frequency of the words is not straight 

forward. The text has to be preprocessed with a morph-

analyser to collect the corresponding root words, as all the 

words in the sentences will be in inflected form (root + 

suffixes). Given a word to the morph-analyser, it will split the 

word into root and its suffix and return the valid root word 

alone. Example  

     நபங்கள஭  -> நபம் + கள் + ஐ -> நபம் 

     marangkaLai -> maram +  kaL  + ai    -> maram 

   (tree + plural +acc)    tree          plural  acc       tree 

 

   Let the set of all sentences in document S= {si | 1 ≤ i ≤ n}, 

where n is the number of sentences in S. For a sentence si= {wj 

| 1 ≤ j ≤ mi} where mi is the number of words in sentence si, (1 

≤ i ≤ n) the affinity weight AW of a word wj is calculated as 

follows:  
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   where S is the set of all sentences in the given document, wk 

is a word in S, WC (S) is the total number of words in S and 

function IsEqual(x, y) returns an integer count 1 if x and y are 

equal else integer count 0 is returned by the function. 

   Then, we find the sentence weight SW (si) for each sentence 

si (1 ≤ i ≤ n) as follows: 
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   At the end of phase 1, the graph vertices hold the sentence 

weight as shown in figure 3 for graph constructed using the 

following sentences. 

[1] தாஜ்  நகால், இந்தினாவிலுள்஭ 

஥ிள஦வுச்சின்஦ங்களுள், உ஬க அ஭வில் 

஧஬ருக்குத் ததரிந்த ஑ன்஫ாகும். 

Taj Mahal, among the memorials in India, is known word 

wide. 

[2] இது ஆக்பாவில் அளநந்துள்஭து.  

This is located in Agra. 

[3] முழுவதும் ஧஭ிங்குக் கற்க஭ா஬ா஦ 

இக்கட்டிடம், ஆக்பா ஥கரில் னமுள஦ ஆற்஫ின் 

களபனில் கட்டப்஧ட்டுள்஭து . 

This building fully made of marbles is built on the shores 

Yamuna river in Agra. 

[4] இது காத஬ின் சின்஦நாக உ஬கப் புகழ் 

த஧ற்஫து.  

This is world famous as a symbol of love. 

[5] ஏழு உ஬க அதிசனங்க஭ின் புதின ஧ட்டின஬ில் 

தாஜ் நகாலும் சசர்க்கப்஧ட்டுள்஭து.  

In the new seven wonders of the world Taj Mahal is also 

included. 

[6] இக்கட்டிடம் முக஬ான நன்஦஦ா஦ 

ஷாஜகா஦ால், இ஫ந்து ச஧ா஦ அவ஦து இ஭ம் 

நள஦வி மும்தாஜ் ஥ிள஦வாக 22 ,000 

஧ணினாட்கள஭க்  தகாண்டு 1631 முதல் 1654 ஆம் 

ஆண்டுக்கு இளடனில் கட்டிமுடிக்கப்஧ட்டது .  

Mughal emperor Sharjahan built this building using 22,000 

workers, from 1631 to mid of 1654, in memory of young wife 

Mumthaz . 

 

 
Fig. 3. Sample graph of Sentence weight calculation in phase 1. 

 
C.   Phase 2 : A Word Positional and String Pattern Based 

Weight Calculation 

   In phase 2, a word positional and string pattern based weight 

in all the vertices is calculated using Levenshtein Similarity 

measure (LSW), which uses Levenshtein Distance for 

calculating the weight.  

   The vertex weight is calculated by summing all the LSW 

and dividing it with number of sentences. 

 

Levenshtein Distance 

Levenshtein distance (LD) is a measure of the similarity 

between two strings source (s) and target (t). The distance is 

the minimum number of deletions, insertions, or substitutions 

required to transform s into t.  

   The LD algorithm is illustrated by the following example 

   LD (RAIL, MAIL) is 1 

   LD (WATER,METER) is 2 

 

   Similarly, the LD calculation is same for words in Tamil, but 

there are three and two character letters in Tamil which we 

have to consider as single character while calculating the 

distance, as shown below. 

   LD(தசால்,வால்)  is 1  

   LD(வரும்஧டி,என்஦ப்஧டி) is 4 
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Levenshtein Similarity Weight 

   Levenshtein Similarity Weight is calculated between the 

sentences, considering two sentences at an instance. This is 

calculated by dividing the difference of maximum length 

between two sentences and LD between the two sentences by 

maximum length between two sentences as shown in formula 

6.  

   Consider two sentences, sentence1 and sentence2 where ls1 

is the length of sentence1 and ls2 be the length of sentence2. 

Compute MaxLen=maximum (ls1, ls2). Then LSW between 

sentence1 and sentence2 is the difference between MaxLen 

and LD, divided by MaxLen. Clearly, LSW lies in the interval 

0 to 1. In case of a perfect match between two words, its LSW 

is 1 and in case of a total mismatch, its LSW is 0. In all other 

cases, 0 < LSW <1. The LSW metric is illustrated by the 

following example. 

   Considering these strings as sentences, 

   LSW (ABC, ABC) =1 

   LSW (ABC, XYZ) =0 

   LSW (ABCD, EFD) =0.25 

Similarly   

  LSW (என்஦ப்஧டி, வரும்஧டி) =  (6-4)/6 = 0.3334 

 

   Levenshtein similarity weight is calculated by the equation 

( , ) ( , )
( , )

ˆ( , )

i j i j
i j
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MaxLen s s


       (6) 

   where, is and js are the sentences. 

   Hence before finding the LSW, we have to calculate the LD 

between each sentence. 

 

Let S = {si | 1 ≤ i ≤ n} be the set of all sentences in the given 

document; where n is the number of sentences in S. Further, si 

= {wj | 1 ≤ j ≤ m}, where m is the number of words in sentence  

si.  

 
 
Fig. 4. Sample graph for Sentence weight calculation in phase 2 

 

Each sentence is ; 1 ≤ i ≤ n is represented as the vertex of the 

complete graph as in figure 4 and iS={s |1 i n}  . For the 

graph in figure 4, find the Levenshtein similarity weight LSW 

between every vertex using equation 6. Find vertex weight 

(VW) for each string is ; 1 ≤ l ≤ n by  

1
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3.   TEXT RANKING 
 

   Obtaining the sentence weight (SW(si)) and the vertex 

weight VW(si), the ranking score is calculated is the formula 

8, where the average of the two scores are found. 

   The rank of sentence si; 1 ≤ i ≤ n is computed as 

ˆ( ) ( )
( ) ;1

2

i i
i

SW s VW s
Rank s i n


             (8) 

   where, ( )iSW s  is calculated by equation 2 of phase 1 and 

ˆ( )iVW s  is found using equation 7 of phase 2. The ranking 

scores for the sentences (si; 1 ≤ i ≤ n,) are arranged in 

descending order of their ranks. 

   ( )iSW s  in phase 1 holds the sentence affinity in terms of 

word frequency and is used to determine the significance of 

the sentence in the overall raking scheme. ˆ( )iVW s  in phase 2 

helps in the overall ranking by determining largest common 

subsequences and other smaller subsequences then assigning 

weights to it using LSW. Further, since named entities are 

represented as strings, repeated occurrences are weighed 

efficiently by LSW, thereby giving it a relevant ranking 

position.  

 
4.   EVALUATION AND DISCUSSION 

 
   We have used the ROUGE evaluation toolkit to evaluate the 

proposed algorithm. ROUGE, an automated summarization 

evaluation package based on N-gram statistics, is found to be 

highly correlated with human evaluations [4].  

   The evaluations are reported in ROUGE-1 metrics, which 

seeks unigram matches between the generated and the 

reference summaries. The ROUGE-1 metric is found to have 

high correlation with human judgments at a 95% confidence 

level, so this is used for evaluation.  The present Graph-based 

Ranking Algorithms for Text Extraction works with Rouge 

score of 0.4723.   

   We manually created the reference summaries for 150 

documents taken from online news articles. The reference 

summaries and the summaries obtained by our algorithm are 

compared using the ROUGE evaluation toolkit, which is 

presented in Table 1. For each article, our proposed algorithm 

generates a 100-words summary. 

 
TABLE I 

ROUGE SCORE 

 Score 

ROUGE-1 0.4723 
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   The methodology performs well even for the agglutinative 

languages. For the word frequency calculation we feed only 

the root words instead of the agglutinative words to get proper 

frequency count. In the phase 2 where the Levenshtein 

Similarity Weight, the distance varies more as the all the 

sentences have different inflected and agglutinative words. 

Again in word frequency, the pronouns occurring in the same 

sentence, which actual reference to one of the noun phrase 

(occurs instead of a noun phrase), cannot to be counted.  

Conclusions 

   In this paper, we introduced Graph Based Ranking algorithm 

for text ranking. Here we have worked for Tamil, a south 

Dravidian language. Here we have shown the necessity of 

getting the root words for Text ranking. The architecture of the 

algorithm helps the ranking process to be done in a time 

efficient way. This text ranking algorithm is not a domain 

specific and also does not require any annotated corpora. This 

approach succeeds in grabbing the most important sentences 

based on the information exclusively from the text itself; 

whereas other supervised ranking systems do this process by 

training on summary collection. 

 

5.   CONCLUSIONS 

 

   In this paper, we introduced Graph Based Ranking algorithm 

for text ranking. Here we have worked for Tamil, a south 

Dravidian language. Here we have shown the necessity of 

getting the root words for Text ranking. The architecture of the 

algorithm helps the ranking process to be done in a time 

efficient way. This text ranking algorithm is not a domain 

specific and also does not require any annotated corpora. This 

approach succeeds in grabbing the most important sentences 

based on the information exclusively from the text itself; 

whereas other supervised ranking systems do this process by 

training on summary collection. 
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