Scientific Attitude Development at Secondary School Level: A Comparison between Methods of Teaching

Shafqat Ali Khan, Ph.D.
Syed Makhdoom Ali Shah, Ph.D. (Scholar)
Ziarab Mahmood, Ph.D. (Scholar)
Raffia Zareen, Ph.D. (Scholar)

ABSTRACT

This is a pre-test, post-test, experimental control group design study. It aims at finding out the effects of inquiry method of teaching versus traditional method in scientific attitude development of the students. Science students were the population of the study. 120 science students were selected through purposive sampling and were equally assigned to experimental group and control group on the basis of scores using the observation rating scale. Sample selection was based on matching, homogeneity and randomization. Each group comprised of 60 students. Both groups were given pre
treatment of selected Biology topics. The control group was taught by traditional method and experimental group was taught by inquiry method. To observe the scientific attitudes of the students during teaching two observers were appointed. The data were analyzed by using t-test. It was found that inquiry method is more effective for teaching biology in developing scientific attitudes as compared to traditional teaching method.

Key Words: Development, Scientific Attitudes, Behaviour, Inquiry Method, Secondary School, Teaching

Introduction

Teaching is the main part of educational process. Teaching is a set of activities which is designed and performed to achieve certain objectives in terms of changes in behaviour. It is the process of helping others to achieve knowledge, attitudes and skills. Knowledge can be used, i.e., use of scientific knowledge for further constructing the knowledge. Shrivastasva (1983) defined “scientific attitude as “Open-mindedness”, a desire for accurate knowledge, confidence in procedures for seeking knowledge and the expectation that the solution of the problem will come through the use of verified knowledge”. Involving the students in different activities/inquiries, they gain facts, concepts along with attitudes. The use of knowledge assists in describing various objects, events and systems. The focus of education is to enable children to use and apply their knowledge and experiences to solve their problems at their own. Performing scientific activities, students collect new information and experiences, which result in to construction of new knowledge. Another advantage of using science activities is that these facilitate the teaching learning process. These activities discourage rote memorization instead emphasize understanding.

Similarly, Edigar, M. & Baskara, Rao (2003, p.62) state that “the most useful scientific attitudes are open mindedness, critical mindedness, respect for evidence,
suspended judgment, intellectual honesty, willingness to change opinion, search for
truth, curiosity, rational thinking etc”. These scientific attitudes are essential not only
for the progress of individuals and nations but also even for their survival. It is,
therefore, very necessary not only to know how to inculcate these qualities in our
school students, but also how to evaluate their existence in the student’s thinking and
behaviour. If positive attitudes are promoted amongst the students, then they will be
able to make adjustment in their practical life better. Otherwise they will fall a lot of
problems and difficulties.

In Pakistan, the syllabi of science are not updated. The students were taught the
history of science and that in a manner, which emphasized factual knowledge with
unnecessary details. Students did not grasp concepts ‘and process of science and little
effort was made to generate spirit of inquiry of independent thinking among students.
Biological science is very productive in achieving the scientific attitudes. But
conventional teaching methods in Pakistan are not appropriate in this direction. The
traditions of conventional ways of science/biology teaching have become out dated and
are seldom helpful for the development to scientific attitudes in the students. Teaching
of science subjects especially Biology teaching at secondary level is technical task.

Inquiry Method

Farenga, Joyce and Dowling (2002, p.34) describe inquiry-based learning in
terms of identifying a question, designing investigation, developing hypothesis,
collecting data, answering and modifying the original question and communicating the
results. There is very careless thought here. These are the processes of science as
research moves forward. It is important that learners in the science disciplines are
introduced to these, illustrating the ways by which science makes its findings.
However, this is very different to the suggestion that this is a way to teach.
Hurd (2000) asserts that the inquiry method is important because it builds ability to reason from concepts and theories and use them in unfamiliar situations, with students becoming able to use techniques of scientific method and interpret experimental data. Similarly, Franklin (2003) asserts that inquiry teaching improves learning because students enjoy doing inquiry activities; students build their own knowledge and retain information best. It creates better critical thinking and problem solving. It also develops better attitude towards science especially biology and also promotes academic achievements.

Different forms of inquiry for the laboratory include structured inquiry, guided inquiry and open inquiry (Wikipedia, 2008; Farenga, Joyce and Dowling, 2002).

Reid (1978) saw the attitudes under five headings:

1. Directed Curiosity
2. Logical Methodology
3. Creative Ingenuity
4. Objectivity
5. Integrity

According to Iqbal (1980, p.17), “Much of the interest can be created in the students if science is taught with a view of developing scientific attitudes. Further that attitude of curiosity in deduction can be developed in science students by a purposeful preparation of teaching unit and by putting the students in activities, involving them in discussion and designing the interesting experiments in a novel manner. It is possible to develop the attitude of curiosity and skill in deduction to a significant extent”.

Mohanty (2001, p.181) recommended that “Science education is to be strengthened in order to develop in the child well defined abilities and values such as the spirit of inquiry, creativity, objectivity, the courage to question and an aesthetic sensibility.” Similarly, Saribas and Hale (2009) observed better attitude towards the course after inquiry based teaching. Although, the students reflected very positive feedbacks for the last interview form, results of the t-test analysis showed that no significant difference.
significant gain could be achieved either in control or experimental group in terms of their attitudes towards chemistry.

The literature and the research conducted in materially advanced countries provide innumerable sign to the present study, out of which, some of the findings like improvement in science achievement scientific attitude may be mentioned. It was proposed to study the inquiry approach on these variables in Pakistani schools to see if their effects would be similar to that of the studies reviewed of advance countries.

Objectives of the study

The main objectives of the study were to:

1. Measure the effect of inquiry lab teaching method on the development of scientific attitudes among students studying biology in 9th grade.
2. Measure the effect of traditional lab teaching method on the development of scientific attitudes among students studying biology in 9th grade.
3. Find out comparative effectiveness of both traditional lab teaching and inquiry lab teaching method regarding the development of scientific attitudes among secondary schools students.

Hypotheses

Ho1: There is no significant difference between the mean scores of scientific attitudes of the students of control group on pre and post observation rating scales.

Ho2: There is no significant difference between the mean scores of scientific attitudes of students of experimental group on pre and post observation rating scales.

Ho3: There is no significant difference between the mean scores of scientific attitudes of students of experimental and control groups on post observation rating scale
Delimitations of the study

The study was delimited to:

1. The methods, i.e., inquiry teaching method and traditional teaching method for lab activities.
2. 12 topics of the biology course for class 9th from the scheme of study.
3. Only boy students of 9th class were included in the study.

Procedure

As the study was experimental, it was aimed at exploring the effect of teaching biology through inquiry method (independent variable) and developing scientific attitudes (dependent variables) through this method. Pre-test and post test equivalent groups design was used in this study. In this design, subjects were randomly assigned to experimental and control groups.

Population

This study focused upon the development of scientific attitudes in secondary school biology teaching through inquiry method. Therefore science students studying biology subject at the secondary level in Rawalpindi constituted the population of the study.

SAMPLE

Purposive sampling technique was used for the selection of the sample. One hundred and twenty students of the 9th class of Govt. Comprehensive High school, Dhole Kashmirian, Rawalpindi were selected as sample of the study. The participants were selected from that school which represents population of typical government schools in Pakistan, i.e., large classes, spacious rooms, learners from families with low to medium socio-economic and educational backgrounds. The experimental group included 60 participants who studied according to the dynamics of inquiry method. Meanwhile, 60 participants in the control group the same material with traditional method. All students from all three sections of science group of 9th class of the school.

Language in India www.languageinindia.com
12 : 9 September 2012
Shafqat Ali Khan, Ph.D., Syed Makhdoom Ali Shah, Ph.D. (Scholar), Ziarab Mahmood, Ph.D. (Scholar) and Raffia Zareen, Ph.D. (Scholar)
Scientific Attitude Development at Secondary School Level: A Comparison between Methods of Teaching
These students were separated into two groups of experimental and control group on the basis of result of pre-test (observation rating scale) score. The score of the pre-test was used to equate the groups i.e. each student of experimental group was equated with the corresponding student in the control group. Students were allotted randomly to control and experimental groups.

Equal environment for the both groups was maintained. All facilities i.e. the time of day, treatment length in time, physical facilities etc. was equally provided to both the groups. The study was continued for the period of fifty six days. The material of both the groups was same only difference that experimental group was taught by using inquiry method and control group was taught by using traditional cook book method. Same science teacher was selected to teach both the groups to avoid the potential factor. The teacher who agreed to participate in the study was trained to apply the elements of inquiry method. For the observations two teachers were also trained to observe the students on observation rating sheet with the help of class teachers to execute the programme smoothly.

The duty of these observers was to observe the students according to the criteria as given in the observation sheet. Half the students were allocated to each observer from each group. This was done facilitate the observation procedures. The observers were given having of how to use observation-rating scale. They had to assess the students’ performance on scientific attitudes on observation sheets. Each observer had an observation record sheet, he assessed the work and performance related to scientific attitudes of the particular students when he was involved in different assigned activities. They were also advised to note date and time of observation, when the experiment was completed, the researcher collected all observation record sheets from the observers and then compiled the behavior-based cumulative / assessment record of each student.

Instrument

Language in India www.languageinindia.com

12 : 9 September 2012

Shafqat Ali Khan, Ph.D., Syed Makhdoom Ali Shah, Ph.D. (Scholar), Ziarab Mahmood, Ph.D. (Scholar) and Raffia Zareen, Ph.D. (Scholar)

Scientific Attitude Development at Secondary School Level: A Comparison between Methods of Teaching
An observation rating scale was used for measuring scientific attitudes in this study. This package was given the name of scientific attitudes scale (SAS). This scientific attitudes scale was used as pretest and posttest in this study. The researcher with the help of experts constructed this package. Scientific attitude considered as a totality of different behaviours. In this observation scale, different behaviours were categorized under six components. They were six scientific attitudes, namely, curiosity, intellectual honesty, open mindedness, persistence, suspended judgment and creativity. These were selected for this study. The final format of the test comprised of 36 items, with six items under each of component. An initial pool of 42 statements on scientific attitudes was prepared. These statements and items were given to 10 experienced and qualified educationists after getting its language approved by experts. The experts were requested to rate each statement/ item on three categories by answering the under mentioned questions:

Does this item/ statement measure the attitude?

- Essential?
- Useful but not essential? Or
- Not necessary?

After collecting the experts’ opinions on every statement/ item, content validity ratios (CVR) were calculated. Statements whose CVRs were more than or equal to 0.62 was significant at 0.05 level of significance.

Calculating reliability coefficients was estimated. For this purpose SPSS programme was used for calculating the reliability. Cronbach’s alpha statistic was used. The total reliability of scientific attitude was 0.956, while factor wise reliability of scientific attitudes, namely, curiosity, intellectual honesty, open mindedness, persistence, suspended judgment and creativity were 0.824, 0.786, 0.808, 0.819, 0.790 and 0.816 respectively.
In the experiment groups, the teacher involved the students in different phases.

1. **Introduction phase**: In this stage teacher briefly introduced the topic.

2. **Motivational phase**: It was the pre-activity discussion phase, where students were prepared to improve and explain their ideas related to their previous knowledge.

3. **Exploration phase**: It was the student centered phase, where teacher played the role of the facilitator, observing, questioning and assisting students as needed. During this phase the students interacted with materials and they were actively involved in inquiry, with the teacher who played the role of the facilitator. The students were given opportunities to explore particular phenomena and generate their own exploration.

4. **Concept invention phase**: In this phase the teacher function was to gather information and the teacher worked with the students to develop new concepts.

5. **Concept application phase**: This phase is student centered and allowed students to apply freshly learned information in new situations.

The traditional method was wholly centered on the teacher. This method largely depends on lecture and demonstration techniques. The students were instructed with cookbook practical in notebook. The teacher stressed on notes delivering. The students only have to verify the results. Traditional method stressed the direct lectures given by teachers. Textbooks and other materials and explanation of concepts of students’ occasional demonstration and review of the textbook were also used. It was teacher-oriented teaching. Practical work was practiced with given cookbook instructions. The teacher under took the task of transferring knowledge.

Data that was obtained as scores of both groups on the pre and posttest (rating and attitudinal scale) were compared and tabulated. To find the difference in the development/performance of the experimental group and control groups, SPSS programme was used.
Results

Table 1: Significance of difference between mean scores of scientific attitudes of experimental group and control group on pre-observation scale

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>t-value</th>
<th>Table value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>60</td>
<td>28.23</td>
<td>5.99</td>
<td>0.89</td>
<td>1.96</td>
</tr>
<tr>
<td>Experimental</td>
<td>60</td>
<td>28.33</td>
<td>5.88</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 indicates that the mean score of control group was 28.23 and that of the experimental group was 28.33 on post observation rating scale. The difference between the two means was statistically insignificant at 0.05 level. Hence, both the groups were found to be almost equal.

Ho1: There is no significant difference between the mean scores of scientific attitudes of students of control group on pre and post observation rating scales.

Table 2: Significance of difference between mean scores of control group on pretest and posttest

<table>
<thead>
<tr>
<th>Control group</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>t-value</th>
<th>Table value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-test</td>
<td>60</td>
<td>28.23</td>
<td>5.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-test</td>
<td>60</td>
<td>32.70</td>
<td>5.26</td>
<td>13.85</td>
<td>1.96</td>
</tr>
</tbody>
</table>

Table 2 shows that the calculated value of t (13.85) was greater than table value (1.96) at 0.05 significance of level. Hence, null hypothesis that there is no significant difference between the mean scores of control group on pre and post observation rating scales was rejected.
Ho2: There is no significant difference between the mean scores scientific attitudes of students of experimental group on pre and post observation rating scales.

Table 3: Significance of difference between mean scores of Experimental group on pretest and posttest

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>t-value</th>
<th>Table value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-test</td>
<td>60</td>
<td>28.33</td>
<td>5.88</td>
<td>26.83</td>
<td>1.96</td>
</tr>
<tr>
<td>Post-test</td>
<td>60</td>
<td>37.83</td>
<td>5.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 shows that the calculated value of t (26.83) was greater than table value (1.96) at 0.05 significance of level. Hence, null hypothesis that there is no significant difference between the mean scores of scientific attitudes of students of experimental group on pre and post observation rating scales was rejected.

Ho3: There is no significant difference between the mean scores of scientific attitudes of students of experimental and control groups on post observation rating scale

Table 4: Significance of difference between mean scores of scientific attitudes of experimental group and control group on post observation scale

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>t-test</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>60</td>
<td>32.70</td>
<td>5.26</td>
<td>5.43</td>
<td>1.96</td>
</tr>
<tr>
<td>Experimental</td>
<td>60</td>
<td>37.83</td>
<td>5.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4 indicates that the mean score of control group was 32.70 and that of the experimental group was 37.83 on post observation. The difference between the two means was statistically significant at 0.05 level. Hence, the null hypothesis “there is no significant difference between the mean scores of scientific attitudes of students
of experimental and control groups on post observation rating scale” Was rejected because, treatment of inquiry teaching method had better effect on scientific attitudes of students of experimental group.

Discussion

As can be seen from table 2 and 3, both the groups show a significant difference in their means from pre-test and post-test. The difference is in favour of post-test. This indicates that there is development of scientific attitude in both the groups in fifty six days. However, the higher mean is obtained by the experimental group on the post test than control group. Similarly Mao and Chang (1998) concluded that inquiry instructional method significantly improved the student learning of earth science concepts compared to the traditional method. It may be observed from Table 1 that there is no significant difference between the means of the two groups on pre-test.

On the contrary, significant difference existed between the two groups with respect to post test scores (observation scale) in biology. This was due to the treatment of inquiry teaching method given to experimental group. Similarly Ornstein (2006) found that open ended experimentation and inquiry produced more positive students’ attitude.

Similarly Qamar, Waheed, Cheema and Abdullah, (1984) observed the effectiveness of inquiry method as compared to traditional method. Findings of the study were; inquiry method was significantly better than traditional method, inquiry method is better for average and above average students, students rated inquiry method as the better method, as it facilitated development of thinking skills paced according to students’ ability.

Sola and Ojo (2007) found that inquiry models of teaching were very effective in enhancing student performance, attitudes and skill development. They reported that student achievement scores, attitudes, and process and analytic skills were either raised or greatly enhanced by participating in inquiry programs”. The application of Language in India www.languageinindia.com

12 : 9 September 2012
Shafqat Ali Khan, Ph.D., Syed Makhdoom Ali Shah, Ph.D. (Scholar), Ziarab Mahmood, Ph.D. (Scholar) and Raffia Zareen, Ph.D. (Scholar)
Scientific Attitude Development at Secondary School Level: A Comparison between Methods of Teaching
inquiry method in teaching biology was found to be more effective because in this method involving students both hands on minds on in different activities. In this way this method increased the interest and enhanced the motivation level of the students. During the treatment, the students taught through inquiry method were found more attentive and enthusiastic because the concepts were explained with the help of concrete examples and relevant activities, played significant role in teaching learning process. The misconception was cleared and remedies were suggested. This practice was very effective in developing various scientific attitudes among students. Inquiry method is more effective in developing scientific attitudes. They were involved in-group activities. This process provided the students in developing attitudes of curiosity, intellectual honesty, open mindedness, persistence, suspended judgment and creativity.

CONCLUSIONS

The present study has resulted in drawing the following conclusions, which may be utilized in improving the present state affairs in school science education.

Students in the experimental group (inquiry method) showed better performance than that of control group (traditional method). Statistical analysis of the data also showed that inquiry method is more effective for teaching biology for the development of scientific attitudes as compared to traditional teaching methods.

This study provided a base and picture about the emphasis that our science teachers should give on the development of behavioral outcomes (scientific attitudes) which is one of important aspects of today’s science teaching throughout the globe. Present practice of experimentation at the end of year is affecting science teaching adversely.
Continuous experimentation and laboratory work is urgently needed. Dichotomy of theory and experimentation should be stopped forthwith. Students’ manual at this level of education may prove a good remedy to the alarming situation.

Scientific attitudes and skills can be developed in science/biology students by a purposeful preparation of teaching unit and by putting the students in activities, involving them in discussion and designing the interesting experiments in a novel manner. This should be made part of classroom teaching.

References

===

Shafqat Ali Khan Ph.D. (Principal Author)
Lecturer in Education University of Education
Attock Campus
Attock, Pakistan
shafqat_khan4@yahoo.com

Syed Makhdoom Ali Shah (Corresponding/Co-Author), Ph.D. (Scholar)
Preston University, Islamabad
Subject Specialist (English)
Govt. Dennys HSS Saddar
Rawalpindi
Pakistan
makhdoomalisyed@yahoo.com

Language in India www.languageinindia.com
12 : 9 September 2012
Shafqat Ali Khan, Ph.D., Syed Makhdoom Ali Shah, Ph.D. (Scholar),
Ziarab Mahmood, Ph.D. (Scholar) and Raffia Zareen, Ph.D. (Scholar)
Scientific Attitude Development at Secondary School Level: A Comparison between Methods of Teaching

453
Ziarab Mahmood (Co-Author), Ph.D. (Scholar)
Hazara University
Mansehra
KPK, Pakistan
sardarziarab@yahoo.com

Raffia Zareen (Co-Author), Ph.D. (Scholar)
International Islamic University
Islamabad
Pakistan
rafiaz2k@yahoo.com